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Abstract:  

The rainfall at Odisha state is monsoon driven. The capital 

city of Odisha state is Bhubaneswar which lies at Khurdha 

district. In this study, a statistical modeling is done for the 

monsoon rainfall of this district including frequency 

analysis of the monsoon rainfalls using L-moment 

techniques. The randomness of the data is determined from 

Anderson Correllogram test and then the existence of 

probable trend is determined using non-parametric test like 

Mann Kendall. All the datasets are found to be random but 

the rainfall during August shows a rising trend at all 1, 5 

and 10% significance level. Also in month July it rises 5 

and 10% Significance level. The forecasting of the monthly 

rainfall is made through an Auto Regressive Moving 

Average (ARMA) model. The ARMA (1,1) combination 

hold good for  months of June, July and September, August 

and October ARMA (1,2) ARMA (3,3) respectively show 

better result. Akaike Information Criteria (AIC) has been 

used for evaluating the performance of ARMA models. 

The study shows the statistical application on climate data 

and the results are advisory and indispensable for making 

useful and reliable decisions in hydrological forecasting 

and planning. 
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Introduction: Statistical analyses of hydrological time 

series play a vital role in water resources studies. The 

statistical results reflect the inherent characteristics of a 

data set. Non parametric tests in detection of trend are a 

regular practice. Particularly in a climate change scenario 

detecting trend in a hydro-meteorological element like 

rainfall has a different meaning. As rainfall is the prime 

factor for all round growth of a locality estimating the 

variation and frequency of rainfall is important in context 

of agriculture, design and construction of storage structures 

as well as for flood hazards. In this study rainfall data of a 

coastal district named Puri of India is first analyzed for its 

randomness using Anderson Correllogram test then for 

existence of trend by using non-parametric Mann Kendall 

test. The rainfall data is modeled through ARMA model in 

order to detect the best possible combination of future 

forecasting. 

Gangyan et al. (2002) examined the temporal and spatial 

sediment load characteristics and used statistical tests such 

Turning point test, Kendall Rank Correlation test, 

Anderson correlogram test for identifying the existence of 

randomness and trend. The periodicity in the sediment load 

data was analysed by Harmonic Analysis and stochastic 

component was modeled by auto regressive model. Gao et 

al. (2002) have applied stochastic hydrology methods to 

analyze the characteristics of annual inflow evolution of 

Miyun reservoir. Jain and Kumar (2012) have detected 

trends in rainfall, rainy days and temperature is being 

analysed through Sen’s non-parametric estimator of slope 

and statistical significance by Mann Kendall test. Sen test 

and Mann Kendall test are being applied in many studies as 

in Vousaghi et al. (2013), Kundu et al. (2014). Chhabra et 

al. (2014) have applied non-parametric tests to identify 

trend utilizing 1’x1’ gridded rainfall data over North India. 

In upper Mahanadi, Jaiswal et al. (2014) have made trend 

assessment for extreme rainfall indices with reference to 

climate change. They have taken six raingauges for 

analysis and found no significant trend in any raingauge 

station while rising trend is seen in very heavy 

precipitation days in most of the stations. Sethy et al. 

(2015) performed a trend analysis for precipitation and 

inflows time series for Salia river basin of Odisha, India 

which is draining to Chilka lake using the Mann–Kendall 

test. Dawson et al. (2015) have studied about trends in 

water quality and quantity for 11 major reservoirs of the 

Brazos and Colorado river basins in the southern Great 

Plains. The study of Manee et al. (2015) applied the Mann-

Kendall (MK) statistical trend test to analyze increasing, 
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decreasing or trendless characteristics of precipitation, 

temperature, inflow to dam reservoirs, release from dam 

reservoirs, and storage volume in dam reservoir in 

Thailand from historical operation recorded data. Jaiswal et 

al. (2015) have made an assessment of change detection 

and trend on monthly, seasonal and annual historical series 

of different climatic variables of Raipur, the capital of 

Chhatisgarh. One of the most useful descriptive tools in 

time series analysis is to generate the correlogram plot 

which is simple a plot of the serial correlations rk versus 

the lag k for k = 0, 1, . . . , M, where M is usually much 

less than the sample size n. If we have a random series of 

observations that are independent of one another, then the 

population serial correlations will all be zero. However, in 

this case, we would not expect the sample serial 

correlations to be exactly zero since they are all defined in 

terms y etc. However, if we do have a random series, the 

serial correlations should be close to zero in value on 

average. One can show that for a random series,  

𝐸[𝑟𝑘]  ≈  −1 (𝑛 −  1) and 

 𝑉𝑎𝑟 (𝑟𝑘)  ≈  1/ 𝑛  

In addition, if the sample size if fairly large (say n ≥ 40), 

then rk is approximately normally distributed (Kendall et al 

1983). The approximate normality of the rk can aid in 

determining if a sample serial correlation is significantly 

non-zero, for instance by examining if rk falls within the 

confidence limits −1/(𝑛 −  1)  ±  1.96/ √ 𝑛. 

 

To identify trend in climatic variables with 

reference to climate change, the Mann-Kendall test has 

been employed by a number of researches with 

temperature, precipitation and stream flow data series 

(Burn, 1994, Douglas et. al 2002, Yue and Hashimo 2003, 

Burn et al. 2004, Lindst𝑜rm and Bergstrom, 2004). It is a 

common practice to use a non parametric test to detect a 

trend in a time series. This test, being a function of the 

ranks of the observations rather than their actual values, is 

not affected by the actual distribution of the data and is less 

sensitive to outliers. On the other hand, parametric trend 

tests, although more powerful, require the data to be 

normally distributed and are more sensitive to outliers. The 

Mann–Kendall test is therefore more suitable for detecting 

trends in hydrological time series, which are usually 

skewed and may be contaminated with outliers. This test 

has been extensively used with environmental time series 

(Hipel and McLeod, 2005). 

The Mann-Kendall trend test is based on the 

correlation between the ranks of a time series and their 

time order. For the statistics S is calculated as equation (1). 

This statistic represents the number of positive differences 

minus the number of negative differences for all the 

differences considered as  

 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖)
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1                                         (1)                 

 

where 𝑛 is the number of total data points, 𝑥𝑖 and 𝑥𝑗 are the 

data values in time series 𝑖 and 𝑗 (𝑗 > 𝑖), respectively, and 

𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖) is the sign function as:  

 

𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖) = {

+1, 𝑖𝑓  (𝑥𝑗 − 𝑥𝑖) > 0

0, 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) = 0

−1, 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) < 0

}                       (2) 

The variance of Mann- Kendall test is calculated by 

equation (3) as  

𝑉𝑎𝑟(𝑆) =
𝑛(𝑛−1)(2𝑛+5)−∑ 𝑡𝑖(𝑡𝑖−1)(2𝑡𝑖+5)𝑚

𝑖=1

18
                         (3) 

where 𝑛 is the number of total data points, 𝑚 is the number 

of tied groups. The tied group means a simple data having 

a same value. The 𝑡𝑖 indicates the number of ties of extent 

𝑖. In case of the sample size 𝑛 >  10, the standard normal 

test statistic 𝑍𝑠 is estimated by equation (4) as 

𝑍𝑠 =

[
 
 
 
 

𝑆−1

√𝑉𝑎𝑟(𝑆)
, 𝑖𝑓 𝑆 > 0

0 𝑖𝑓 𝑆 = 0
𝑆+1

√𝑉𝑎𝑟(𝑆)
, 𝑖𝑓 𝑆 < 0

(4)                                              (4)                                               

 

The positive values of 𝑍𝑠  show increasing trends while 

negative values represent falling trends. As 5 % 

significance level is taken standard for this study, the null 

hypothesis of no trend is rejected if |𝑍𝑠| > 1.96. 

ARMA model developed by Box and Jenkins 

(1970) provides one of the basic tools in time series 

modeling. The modeling and forecasting procedures in 

identifying patterns in time series data involve knowledge 

about the mathematical model of the process.  

First, for a series tx  , we can model that the level of its 

current observations depends on the level of its lagged 

observations The AR (1) (autoregressive of order one) can 

be written as: 

 

 

Where  

2
(0, )

t t
WN   

 Similarly, AR(p) (autoregressive of order p) can be written 

as: 

11 2
.......

2 tt t t ppt
xx x x  

    
 

1 tt tx x 
 
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The MA (1) (moving average of order one) and MA (q) 

(moving average of order q) can be written as 

1t ttx 


    
and 

11
.......

t t t qt qx   
     

 
If we combine these two models, we get a general ARMA 

(p, q) model, 

11 2 11 2
...... ......

t t t qt t t t p qpx x x x       
         

 

 

The performance of calibration and validation is highly 

dependent on the structure of the model and the parsimony. 

The most prominent, and still widely used, criterion is the 

Akaike Information Criterion (AIC), proposed by Akaike 

(1974).  Akaike Information Criteria (AIC) is a widely 

used measure of a statistical model. It basically quantifies 

1) the goodness of fit, and 2) the simplicity/parsimony, of 

the model into a single statistic. 

ln( ) 2AIC m RMSE n                                         

            

Where, m  is the number of input–output patterns used for 

training, n is the number of parameters to be identified and 

RMSE  is the root-mean-square error between the network 

output and target. The performance measures generally 

improve as more parameters are added to the model, but 

the AIC  statistics penalize the model for having more 

parameters and, therefore, tend to result in more 

parsimonious models.  

 

Results and Discussion: 

In this study the monthly rainfall data for monsoon season 

of Khurda district (Fig.1) is taken into consideration for a 

period of 120 years.  

 
Fig.1 Study area, Khurdha district 

The data is initially tested for randomness using Anderson 

Correlogram test for 1%, 5% and 10% significance level. 

The testing criteria Z value is obtained for these 

significance levels (Table 1). It is found that in most of the 

case the data is random other than in the month of August 

at 10 % significance level.   

Table 1: Randomness check using Anderson Correlogram 

test 

 

Month R1 Z Significance Level 

1% 5% 10% 

June -

0.03

7 

 

-

0.31

0 

Rando

m 

Rando

m 

Rando

m 

July -0.07 -

0.67

4 

Rando

m 

Rando

m 

Rando

m 

August -

0.16

1 

-

1.67

6 

Rando

m 

Rando

m 

Not 

Rando

m 

Septembe

r 

-

0.08

5 

-

0.84

4 

Rando

m 

Rando

m 

Rando

m 

October 0.09 1.07

8 

Rando

m 

Rando

m 

Rando

m 

 

To know the statistical values of the rainfall series, all the 

statistical calculations like mean, standard deviation, 

coefficient of variation, Coefficient of Skewness, Kurtosis 

are calculated (Table 2). The month August is showing the 

highest average rainfall as 250.15 mm whereas in June it is 
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166.47 mm. it is also revealed that in every month the 

highest rainfall is above 500 mm except June. 

Table 2 Statistics of monthly rainfall series 

 

Jun Jul Aug Sep Oct 

Avg 166.47 243.50 250.15 218.62 198.20 

Max 398.49 614.80 559.20 513.10 663.90 

Min 33.17 55.42 96.30 19.86 16.87 

Cs 0.85 1.00 0.93 0.52 0.99 

Ck 0.62 1.98 3.39 0.65 1.19 

 

The existence of trend is also tested using non-parametric 

Kendall Rank Test using the significance levels of 1%, 5% 

and 10% (Table 3). The no trend has been detected in the 

month of June, September and October where as rising 

trend in July and August Rising trend of July and August is 

showing increase in frequency of depressions/ cyclones, 

because Khurdha is being a coastal district often remains 

exposed to cyclonic rainfalls The district also remains on 

the cyclone tract that enters to the state of Odisha. 

However the falling trend of rainfall is not seen during any 

of the monsoon season. 

Table 3: Trend check using Mann Kendall test 

 

Month P Z Significance Level 

1% 5% 10% 

June 3514 -

0.25404 

No 

Trend 

No 

Trend 

No 

Trend 

July 4524 3.10295 Rising 

Trend 

Rising 

Trend 

Rising 

Trend 

August 4175 2.74457 Rising 

Trend 

Rising 

Trend 

Rising 

Trend 

September 3629 0.26765 No 

Trend 

No 

Trend 

No 

Trend 

October 3765 0.88461 No 

Trend 

No 

Trend 

No 

Trend 

 

The ARMA model is tried for modeling of the time series 

in monthly basis with different Auto Regressive and 

Moving Average combinations. In both the cases the trial is 

done from 0, 1, 2, 3 for p, q values at different 

combinations.  The outputs are recorded according to AIC 

values fixed as the performance criteria (Table 4.1 to 4.12). 

Table 4.1 AIC values for the month of June 

q in 

MA(q) 

p in AR(p) 

0 1 2 3 

0  1457 1441 1427 

1 1526 1395 1397 1397 

2 1504 1397 1399 1401 

3 1489 1397 1401 1403 

 

Table 4.2 AIC values for the month of July 

q in 

MA(q) 

p in AR(p) 

0 1 2 3 

0  1503 1482 1467 

1 1601 1437 1439 1439 

2 1568 1438 1441 1443 

3 1545 1439 1443 1442 

 

Table 4.3 AIC values for the month of August 

q in 

MA(q) 

p in AR(p) 

0 1 2 3 

0  637.2 622.4 602.7 

1 696.4 603.4 602.7 597.5 

2 681.6 589.2 606.6 606.7 

3 668.9 591.2 593.2 588.9 

 

Table 4.4 AIC values for the month of September 

q in 

MA(q) 

p in AR(p) 

0 1 2 3 

0  1478 1458 1449 

1 1575 1412 1414 1415 

2 1541 1414 1414 1416 

3 1517 1415 1418 1417 

 

Table 4.5 AIC values for the month of October 

q in 

MA(q) 

p in AR(p) 

0 1 2 3 

0  1555 1540 1524 

1 1599 1499 1501 1502 

2 1585 1501 1501 1504 

3 1574 1502 1503 1495 

 

Taking the AIC value as performance criteria monthwise 

best combinations are retrieved from Table 4.1 to 4.5. The 

ARMA coefficients are also derived for the said best 

combinations. For the future forecasting the same 

coefficients may be utilized for finding the respective 

monthly values. 

Table 5, AR, MA coefficients for best combinations in 

different months 

Month Best 

combin

ations 

(p,q) 

ARMA coefficients AIC 

value

s 
p q 

June 1,1 -1 -0.99956 1395 

July 1,1 -0.99974 -0.93586 1437 
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August 

1,2 -0.99977 -1.0832 589.2 

0 0.16457 

September 1,1 -1 -0.99972 1412 

October 

3,3 0.74082 0.96641 1495 

-0.9839 -0.96369 

-0.75692 -0.99712 

Conclusion: The statistical modeling is applied on the 

rainfall data of Khurdha district. The statistical parameters 

are obtained over the study periods. The rainfall values are 

found to be random. The non-parametric trends are 

obtained which shows the possibility of rising trend during 

the month of July and August whereas a no trend scenario 

is visible during rest of the monsoon period. In none of the 

cases falling trend is not seen. This indicates the 

occurrence of number of cyclonic and depression led 

rainfall is increasing as the district lies in the coastal part 

and close to the route of cyclones. Further the ARMA 

model is applied in order to find the coefficients for the 

forecasting of the rainfall series. The monthwise best p, q 

combinations are determined and basing on the AIC values 

the coefficients are obtained for the ARMA model. 
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