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Abstract - A continuous process of monitoring
of the clinical condition of COVID patients is
proposed in this paper. The coined technique
is fundamentally designed on the multi-
dimensional data framework architecture. The
measuring method of the continuous
monitoring process for a greater number of
patients with multiple sensors and medical
devices in ICUs in a large hospital is very
much difficult to manage and control. The
regular health-care monitoring systems are
mainly designed on the critical parameters of
the patients. These constraints are also taken
into account to design the key blocks for this
framed Tesseract model with other
parameters also e.g. number of wards etc.
This model would not only help the doctors to
check and analyze the medical data of the
patients in a multi-dimensional format but
also will help the hospital authority to manage
and scrutiny the patient’s database
efficiently. This technique would be beneficial
for both stakeholders of the medical field.
Keywords - Time-quantum, Data Tesseract,
Continuous monitoring, multi-dimensional
visualization, COVID patients

INTRODUCTION
Continuous health-care checking is being
considered as one of the most critical
monitoring factors in medical scenarios
especially in developing countries where the
population is huge. So, it is very essential to
streamline the multi-vitiate medical data [1]
with an increasing rate of COVID
contamination. To rationalize this multi-
constrains data-oriented process, this
Tesseract model [2] has been proposed. The
technical parameters related to medical data
like physiological sensors attached to the body
[3] of the patients are performing continuously.
And in a larger hospital, multiple patients
affected with COVID in the number of wards
make the data handling scenario [4] more
complex especially for the medical staff who is
continuously trying their best to save a life.

The basic difference from the traditional
monitoring technique compared to the
proposed model is that the old techniques only
based upon the approaches of various data-
science processes [5] like heat-map, 2D scatter
plot, etc. which may be good in their
calculative means.
However, the proposed architecture manages
the best structural integrity between the
medical parameters and statistical data [6]
through the multi-dimensionality. The hospital
authority is usually looking further to point-
down any specific statistics related to the
COVID patients to boost up their medical
information database [7] and public
information. And the doctors are looking for a
smellier pattern in the patients so that
treatment would be easy. In this multi-
demanding, multi-crucial scenario, [8] an ideal
stage for integrated medical data is very
essential to be developed with all parameters
that could be measured. The hospital authority
and medical staff could handle the framed data
[9] thoroughly and cultivates further
knowledge as their requirements.
In the techniques, doctors can either examine
the COVID patient or they could perform data
analysis and follow higher authority [10]
simultaneously. This proposed system helps to
record the data interfacing [11] with each level
of COVID patients with its serial number, ward,
and physiological parameters.
In this study, it is has been observed that time
scheduling for COVID patients monitoring
based on the continuity of work in a hospital is
not explored on a large scale [12]. The
proposed system will also help the doctors to
judge the contamination of the COVID patients
in the ward which is often miscalculated by the
authority [13].
In this process, the clinical parameters are
highlighted by the critical factor [14] of
engagement of COVID patients at the isolation
center. The further contraction of data was
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decreasing concerning the health quality of the
COVID patients and forcing the doctors to
recruit and retain more medical needs.
Hospital's authority loses control of the data
affectability [15] to gain the potential
significance of the infectious rate over each
level of patients [16].
In this technique, the overall percentage
matches is an old medical modeling process
[17], in 2008, an updated COVID patient
monitoring system was introduced especially
for the parameters-based data [18] related
measurement technique. Those particular
patterns in data had made a substantial impact
on the relationship between doctors and
medical staff. To help COVID patients for
further restrains in the hospitals, monitoring
[19] has begun to learn important information
about each COVID carries. The hospital
authority could calibrate those data and
parameters with the old model [20].
In this method, the rechecking of the
assessment factors of a COVID patient who
becomes a top considerable medical
emergency was analyzed for decision-making
practices [21] by the doctors. If results were
found align closely to the ideal condition, the
validity of that COVID patient as recovering is
good. However, if the results deviate
significantly from the ideal condition, there
might be a reason to re-calibrate [22] the
importance of certain parameters of the COVID
patients again.
This study is carried out to identify the
dimensional aspects responsible for the
successful design and implementation of an
intelligent monitoring system [23] for COVID
patients. Its system will be employed for all
stages of monitoring with an equal preference
for all number of COVID patients. On one hand,
it accurately monitors the physical data of
each COVID patient as well as on the other
hand the data would be integrated with
mathematical bonding [24] directly.
DESIGNING OF THE PROPOSED TECHNIQUE
In this proposed monitoring technique of
COVID patients, new terminology is introduced
as “time-quantum” which means the unit of
monitoring duration. This time quantum factor
could be divided or integrated according to the
requirement of the medical advice. Such as, if
the monitoring duration is 8 hours and the
value of time-quantum, denoted as τ, is set as
30 sec, the total rate of data acquisition would
be taken in total 8 hr. of monitoring would be,

P = 8*60*60/30=960. So, in 8 hours of
monitoring, a total of 960 cycles of data would
be obtained. In this duration, if data would not
be taken in a certain interval, then that blank
in the dataset would also be recognized as a
gap. In these 8 hours of duration, if data would
not be acquired for 120 sec., the total number
of cycles would be 960 - 120/30 = 956 and the
gapped quantum value would = 4. The
proposed technique also counts the number of
total time-quantum consumed for the data
acquisition and data missed. The value of time-
quantum is defined by the doctor according to
their judgment of the patients. The medical
expertise would be the sole controller of the
duration and starting-ending time of this time-
quantum based monitoring technique for the
patients individually.
A. Matrix of the COVID patients in a ward in a
hospital
The serial structure of the proposed time-
quantum based monitoring technique for
COVID patients is indicated in Table – 1:

TABLE I
(EXAMPLE OF A UNIT OF THE TIME-QUANTUM FOR CONTINUOUS

MONITORING)
T
Q

τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ

�2 �22 � 22 �23 � 23 �2�2 � 2�2
�3 �32 � 32 �33 � 2�3 �2�3
�4 � 42 �42 � 43 �42 � 2�2
… … … … … …
�� ��2 � �2 ��3 � �3 ���� � ���
Where,
• τ = fixed range of the time-quantum for

COVID patients to obtain the data as per
the interval

• Yi = ith patient in the ward.
• munu= the duration of data obtaining for the

uth COVID patient at its nuth interval, e.g. uth
patient in the ward1 uses munu unit of time-
quantum (τ) at nuth duration.

• The total number of time-quantum
consumed by the uth patient in ward1 at
nuth duration is, ����τ

• bugu= the duration for not obtaining of data
from the uth patient at guth duration, e.g. uth
patient in the ward1 missed bugu unit of
time-quantum at its guth duration.

• The total number of time-quantum missed
by the uth patient in ward1 at guth duration
is, � ���τ

So, the total data collection according to the
time-quantum framework for the uth patient is
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during this complete monitoring period, Tu =
mu1 +… + munu + bu1 +… + bugu = i=1nu mui� + j=1gu buj� = Mu +
Bu , where, Mu = mu1 +… + munu = i=1nu mui� , the total
unit of time-quantum consumed by the 4th
patient in that duration. Now, Bu = bu1 +… + bugu =

j=1gu buj� , the total unit of time-quantum missed by
the uth COVID patient in that period. Now, if the
missed time-quantum value, Bu for the uth
patient is larger than the threshold limit of
adjustable tolerance for the medical practices,
a notice will be issued to that doctor regarding
the uth patient. e.g., if data from uth patient is
missed for more than 5 unit of time-quantum
where the threshold limit for missed time-
quantum value is 4, then a warning would be
generated automatically to the patients about
the condition of the patients. So, the medical
condition index of uth patient would be
calculated as, Pu =

Mu
Tu

* 100%, where, Tu =
total number of time-quantum assigned for the
uth patient. So, the number of time-quantum
consumed by total COVID patients of that
ward1 is, M = M1 + M2 +… + Mu = k=1u Mk� = k=1u i=1k mini�� .
And, the missed time-quantum values by all
COVID patients on the same ward1 is, B = B1 +
B2 +… + Bu = k=1u Bk� = k=1u i=1k bini�� . Then, the total
number of time-quantum value assigned for all
the COVID patients in that ward1 is, T = M + B
= (M1 + M2 + … + Mu) + (B1 + B2 + … +
Bu)= k=1u Mk� + k=1u Bk� = k=1u i=1k mini�� + k=1u i=1k bini�� .

Now, if the missed time-quantum value, B in
the ward1is larger than the threshold limit of
tolerance, a notice will be issued to the Head
of that ward automatically. Like, if ward1
missed 50 units of time-quantum in total where
the threshold limit is 40, then a warning will be
generated automatically. So, the medical
condition index of that ward1 is, � = � �
*100%. Now, the complete time-quantum
value consumed by the total wards in a
hospital is, � ∗ = � 1 +� 2 +… +� h = �=1� � �� , and
where, � h = the number of time-quantum
consumed by that hospital. And, the total
missed time-quantum by all wards in the
hospital is, �∗ = �1 + �2 +… + �h = �=1� ��� , where,
�h = the number of missed time-quantum by
the hospital. Then, the entire number of the
time-quantum value assigned for the whole
hospital is, T*=M*+B*. So, the medical
condition index of that hospital is, � ∗ = � ∗

�∗

*100%. The graphical formation of the time-
quantum value for the patients and medical
data in the hospital is drawn with the variation
of the 3-dimensional structure as indicated in
Fig. 1:

Fig. 1. Graphical representation of time quantum value
with each departmental interface and employee

Where, “e1 = COVID patient 1” and “dept 1 =
ward 1”, The X-axis represents the number of
wards of the hospital, Y-axis represents the
“monitoring time-quantum unit” defined by the
hospital, Z-axis represents the number of
COVID patients in the hospital, Each small box
represents a single time-quantum unit (τ)
assigned to the patients.
B. Data Cube representation of COVID
patient’s medical condition
The basic elements in this data Tesseract
represent the following parameters for the
clinical measurement for the COVID patients:
• Slice: choosing of two-dimension

parameters in the data cube of patients,
e.g. (time-quantum, COVID patients) or
(COVID patient, ward), etc.

• Dice: indicates the used quantum unit of
the data cube of the patient at a certain
moment. To indicate the utilized time-
quantum, the value of τ = 1 and 0 for
otherwise.

• Drill Down: provide detail of the total time-
quantum values for each COVID patient in
every ward

• Roll-up: summarize the data for the usages
of time-quantum value for each patient in
each ward

The graphical representation of the defined
parameters mentioned above is indicated in
Fig. 2:
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Fig. 2. Graphical representation of time-quantum unit with
other dimensional factors

Where X-axis represents the number of wards
of the hospital, Y-axis represents the “time-
quantum unit” assigned to the patients; Z-axis
represents the number of patients in the ward.
The single unit of the Tesseract dice in Fig. 2 is
containing the value of the clinical parameter
of uth patient at a particular time = munu. So, the
obtaining function for uth patient in a medical
ward for a certain interval of time-quantum is
defined as, fX,Y,Z = Pu or, where, f is also
known as “Measured Value Function of the
Dice” designed concerning the 3-dimensional
axis of the cube model. Now, measuring the
medical condition of the patients over a week,
the structure of the data cube would be like as
shown in Fig. 3:

Fig. 3. Graphical representation of days in a week with
various wards and patient

Where,
• The X-axis represents the number of wards

of the hospital.
• Y-axis represents the monitoring days of

the patients.
• Z-axis represents the number of COVID

patients in the ward.
The single unit of the Tesseract dice in Fig. 3,
is containing the value of the medical condition

index of the uth patient at that particular day =
Qu. So, the obtaining function for uth patient in
a particular ward for a certain day in a week is
defined as, dX,Y,Z = Qu or, where, d is also
known as “Measured Collective Function of the
Dice” designed concerning the 3-dimensional
axis of the cube model.
For the multi-dimensional data cube, Data-
Tesseract is designed with the inclusion of
another parameter as various departments or
wards in the hospital as an additional
dimension in it. For example, an additional
parameter for measuring the statistical
condition of the COVID hospital is the number
of wards in it denoted as axis W in the
structure of the following Data Tesseract along
another axis {X, Y, Z} in the cube. So, in the
Tesseract model along with the series of time-
quantum value of the multiple patients, the
various wards in hospitals and days of
continuous monitoring could also be included
in a single structure of the data model. The
respective diagram of the Tesseract model
containing all those multiple parameters:
patients, time-quantum, wards, and days, is
indicated in Fig. 4:

Fig. 4. Data Tesseract model in 4-Dimension

The designed structure of Data Tesseract,
shown in Fig. 4, the set of three different data-
cubes {A,B,C} whose coordinates are defined
as, A=(a, b, c, d, e,f, g, h); B=(k, l, m, n, o, p, q,
r); C=(s, t, u, v, w, x, y, z) in 3 dimensions as:
• The X-Axis represents the series of time-

quantum value of such patients.
• Y-Axis represents the number of patients in

a medical ward.
• Z-Axis represents the monitoring days of

the patients.
• W – Axis represents the different wards of

the hospital.
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The above parameters could be also
parameterized with another variable like
different hospitals etc. taking as another
dimension, Ψ – axis. The inclusion of several
parameters in the data model is directly
depending on the number of dimensionality of
the Tesseract. For the higher dimensional data
operation, the Tesseract model could be raised
with another dimensionality like Ω – axis for
different cities. So, it could be written as Data
Tesseract = data cube ∪ extra dimensions.
Then, the detection functions for obtaining the
medical condition of the uth patient in a certain
ward for a particular day in an identified
hospital concerning the dimensionality of
Tesseract model is defined as, kX,Y,Z,W = Tu
where k is also known as “Total Value Function
of the Dice” designed concerning the multi-
dimensional Tesseract model. The
representation of this Tesseract for the clinical
condition of the patients in vector space
architecture is shown in Fig. 5:

Fig. 5. Measuring of an individual time-quantum unit in 4-
Dimensional data Tesseract in vector form

The multi-dimensional data Tesseract model
for the monitoring of patients is calculated on
the time-quantum value and medical condition
index (M*, B*) stored in the unit block of data
Tesseract model. Due to multiple variations in
several patients, wards, days, and a series of
time-quantum values, the medical condition
index in the data-Tesseract model would be
denoted as: DTDBxi + yj + zk + wh , where DTDB =
data point of the data Tesseract, i – Unit per
time-quantum block, j – Unit per patient, k –
Unit per monitoring days, h – Unit per wards.

So, the calculated value of the medical
condition index for the COVID patient at a
certain time-quantum phase with other the
multiple factors will be indicated as:

P =
kMDTDBxi +yj +zk +wh

kTDTDBxi +yj +zk +wh
∗ 100% = P

=
kMDTDBxi +yj +zk +wh

kMDTDBxi +yj +zk +wh + BDTDBxi +yj +zk +wh

∗ 100%

Where,
• P = medical condition value of the COVID

patient
• MDTDBxi +yj +zk +wh = used time-quantum slot of

that COVID patient at a certain moment
• BDTDBxi +yj +zk +wh = gapped time-quantum slot

of that COVID patient at a certain moment
• k… = Total Value Function of the Dice for

the patients
So, the value of the medical condition index for
the bth patient (y=b) on cth day (z=c) of
monitoring in dth ward (w=d) during the ath
time-quantum (x=a) stamp would be stored at
a certain position in the Tesseract unit
indicated as storT∗ = storDTDBxi + yj + zk + wh . And,
the retrieve function for that certain value from
the Tesseract is denoted as retvT∗ = retvDTDBxi +
yj + zk + wh. So, the foundational structure of the
vector for the data Tesseract architecture is
mapped between the time-quantum database
to the medical condition index indicated as:
VCl:DcT ⟶ PmT, where Vcl = vector calculus, DcT
= data Tesseract database, PmT = time-
quantum based medical condition index. So,
the representation of the Total Value Function
of the Dice for the patients retrieved from the
data Tesseract model is shown in Fig. 6:
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Fig. 6. Transition of a time-quantum unit in 4-Dimensional
data Tesseract model

Now, the calculation of the medical condition
index for a COVID patient for a complete time-
quantum scale of monitoring is indicated as:
PX = kDTDBX i� + bj + ck + dh = kMX

∗ ,BX
∗ , where:

• PX = medical condition of a COVID patient
for a complete time-quantum scale of
monitoring

• MX
∗ = total number of time-quantum used

by that COVID patient for a complete time-
quantum scale of monitoring

• BX
∗ = total number of time-quantum missed
by that COVID patient for a complete time-
quantum scale of monitoring

DESIGNING OF THE PROPOSED TECHNIQUE
The implementation of the proposed multi-
dimensional Tesseract model is initially applied
to the twin medical dataset of COVID patients
obtained from Kaggle. One dataset contains
the physiological temperature value of the
COVID patients and the other does not. There
are two CSV (Comma Separated Value) files
that have been acquired in this study and
executed in Python. The code for visualization
of data is written and implemented in Python
3.8.2 in a Core 2 duo processor-based system
on a 64-bit Windows 10 platform with the help
of 4 Gb RAM.
In both CSV files, all the physiological
parameters used in the medical study of the
COVID patients are almost identical. Those CSV
files are then analytically visualized in the
online RAWGraph portal and diagnostic XLStat
tool in a windows office suit. The multi-
dimensional plotting visualization of the
medical data of the COVID patients for
dataset – 1 and 2 executed in Python is shown
in Fig. 7:

Fig. 7. Discrete variation of plotting of medical data of
COVID patients

In Fig. 7, both images indicate the discrete
variation of plotting of medical data of COVID
patients where the axis is denoted as BP_ratio
(X-axis), Airflow index (Y-axis), and Spir_index

(Z-axis). The multi-dimensional contour
visualization of the medical data of the COVID
patients for dataset – 1 and 2 executed in
Python is shown in Fig. 8:

Fig. 8. Continuous contour variation of medical data of the
COVID patients

In Fig. 8, both images indicate the continuous
contour variation of medical data of the COVID
patients where the axis is denoted as: no. of
medical parameters (X-axis), no. of COVID
patients (Y-axis) and values of those
parameters (Z-axis). The 3-dimensional
visualization of the medical data of the COVID
patients for dataset – 1 and 2 executed in
XLStat is shown in Fig. 9:

Fig. 9. Different scatter plot distribution of COVID patients
for dataset – 1 and 2 concerning temperature

In the left part of Fig. 9, the color variation
indicates the orientation of the temperature
value of patients concerning different axis:
ECG (X-axis), Airflow index (Y-axis), and BP
ratio (Z-axis). The numerical indication at each
plot mentions the GRS factor of each patient.
And in the right part of Fig. 9, the color
variation indicates the orientation of the
patients concerning different axis: Airflow
index (X-axis), BP ratio (Y-axis), and ECG (Z-
axis). And the numerical indication at each plot
mentions the SPiR factor of each patient. The
simulation of the medical data of the COVID
patients for the dataset-1 performed in XLStat
is executed by the proposed three-dimensional
graphical modelling as indicated in Fig. 10:
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Fig. 10. 3-D graphical representation of the COVID patients
of the dataset – 1

In Fig. 10, the 3-dimensional graphical
representation of the COVID patients of the
dataset – 1 is designed for the GSR_index
value = 2.64, the respective values are: ECG =
1.02, Airflow_index = 1.03, BP_ratio = 4.91 and
patient category between no. 68 to 82. The
simulation of the medical data of the COVID
patients for the dataset-1 performed in XLStat
is executed by the proposed three-dimensional
graphical modelling as indicated in Fig. 11:

Fig. 11. 3-D graphical representation of the COVID patients
of the dataset – 2

In Fig. 11, the 3-dimensional graphical
representation of the COVID patients of the
dataset-2 is for the GSR_index value = 0.5, the
respective values are: ECG = 32, Airflow_index
= 0.71, BP_ratio = 0.31 and patient category
between no. 0 to 15. With this technique the
resulted plots of the graphs generated from
the XLStat is linked with an additional
dimension with each other. The simulation of
the connective aspect between the dataset-1
and 2 of the COVID patients performed in

XLStat is executed by the proposed multi-
dimensional graphical modelling technique as
indicated in Fig. 12:

Fig. 12. 4-D Tesseract model-based representation of
medical dataset – 1 and 2

In Fig. 12, the complete image indicates 4-
dimensional Tesseract model-based
representation of medical data of the COVID
patients where the axis are denoted as the
dimensionality is represented according to the
BP_ratio and ECG of the COVID patients, a
variation of colours represents temperature
differences of COVID patients and the extra-
dimensional line denotes the variation of wards
in the hospital. The multi-dimensional
visualization of the medical data of the COVID
patients of the dataset-1 executed in XLStat is
shown in Fig. 13 after subdivided into two
uniform sub-wards:

Fig. 13. Distribution of temperature value of patients in a
dataset – 1 into two uniform subdivisions

In the left part of Fig. 13, the colour variation
indicates the orientation of the temperature
value of patients concerning different axis:
ECG (X-axis), Airflow index (Y-axis), and BP
ratio (Z-axis). The numerical indication at each
plot mentions the GRS factor of each patient.
And in the right part of Fig. 13, the colour
variation indicates the orientation of the
patients concerning different axis: Airflow
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index (X-axis), BP ratio (Y-axis), and ECG (Z-
axis). And the numerical indication at each plot
mentions the SPiR factor of each patient. In
Fig. 26, the sub-divisional factor is oriented
with all the parameters of the COVID medical
data and its respective patients uniformly. The
simulation of the 1st part of the subdivided
medical dataset – 1 for the forty-six COVID
patients performed in XLStat is executed by
the proposed three-dimensional graphical
modelling as indicated in Fig. 14:

Fig. 14. 3-D graphical representation of the COVID patients
for 1st part of dataset – 1

In Fig. 14, the 3-dimensional graphical
representation of the COVID patients
subdivided into two uniform smaller wards
from patient - 1 to patient - 46 in dataset – 1 is
designed for the GSR_index value = 1.3, the
respective values are: ECG = 1.03,
Airflow_index = 1.03, BP_ratio = 1.88 and
between the patient category from no. 39 to
46. The simulation of the 2nd part of the
subdivided medical dataset – 1 for another
forty-six COVID patients performed in XLStat is
executed by the proposed three-dimensional
graphical modelling as indicated in Fig. 15:

Fig. 15. 3-D graphical representation of the COVID patients
for 2nd for dataset – 2

In Fig. 15, the 3-dimensional graphical
representation of the COVID patients
subdivided into two uniform smaller wards
from patient - 1 to patient - 46 in dataset – 1 is
designed for the GSR_index value = 2.64, the
respective values are: ECG = 1.02,
Airflow_index = 1.03, BP_ratio = 4.91 and
between the patient category from no. 73 to
81. With this technique the resulted plots of
the graphs generated from the XLStat is linked
with an additional dimension with each other.
The simulation of the connective aspect
between the subdivided datasets of dataset-1
of the COVID patients performed in XLStat is
executed by the proposed multi-dimensional
graphical modelling technique as indicated in
Fig. 16:

Fig. 16. 4-D Tesseract model-based representation of
medical dataset – 1 subdivided

In Fig. 16, the complete image indicates 4-
dimensional Tesseract model-based
representation of medical data of the COVID
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patients where the axis are denoted as the
dimensionality is represented according to the
BP_ratio and ECG of the COVID patients, a
variation of colors represents temperature
differences of COVID patients and the extra-
dimensional line denotes the variation of wards
in the hospital where the dataset – 1 is divided
into two uniform sub-wards. The directive
relation between medical dataset – 1 with its
subdivisions simulated by the proposed 4-
dimensional Tesseract based graphical
structures and performed in XLStat is shown in
Fig. 17:

Fig. 17. Relation between the 4-D Tesseract models and
sub-division of dataset – 1

In Fig. 17, the complete image indicates the
relation between the 4-dimensional Tesseract
models based representation of medical data
of the COVID patients for dataset – 1, 2 and the
sub-division of wards for the dataset – 1 into
two uniform sub-wards in the hospital.
A. Effectiveness of the proposed modelling
The efficiency of the proposed model is
evaluated on the 3-dimentional graphical
structure model instead of numerical valuation
method. So, the measurement of the
competence is modelled through the simulated
relation between the dataset: 1 – 2 and
subdivided datasets. The connective 3-
dimentional representation of the medical
dataset-1 and 2 according to the simulated 4-
dimensional Tesseract based graphical model
and performed in XLStat is shown in Fig. 18:

Fig. 18. Combined 4-D representation of the COVID
patients for both dataset-1 and 2

In Fig. 18, the combined image indicates 4-
dimensional graphical representation of the
COVID patients for both dataset-1 and 2 with
respect to the Tesseract model where the
extra-dimension graphical structure denotes
the variation of wards in the hospital. The
connective 3-dimentional representation of the
subdivision of the medical dataset-1 according
to the simulated 4-dimensional Tesseract
based graphical model and performed in
XLStat is shown in Fig. 19:

Fig. 19. 4-D Tesseract model based graphical
representation of dataset – 1 subdivided

In Fig. 19, the combined image indicates 4-
dimensional graphical representation of the
COVID patients for the dataset-1 with respect
to the Tesseract model where the extra-
dimension graphical structure denotes the
division of two uniform sub-wards in the



https://doi.org/10.36375/prepare_u.iei.a147

hospital. The directive combination between
medical dataset – 1 with its subdivisions
simulated by the proposed 4-dimensional
Tesseract based graphical technique and
performed in XLStat is shown in Fig. 20:

Fig. 20. Relation between the 4-D Tesseract graphical
models & subdivision of dataset – 1

In Fig. 20, the complete image indicates the
relation between the 4-dimensional Tesseract
models based 3-D graphical representation of
medical data of the COVID patients for
dataset – 1, 2 and the sub-division of wards for
the dataset – 1 into two uniform sub-wards in
the hospital.
B. Numerical comparativeness
The numerical comparative efficiency of the
COVID dataset – 1 and 2 with the subdivision of
the datasets 1 are calculated with respect to
the numerical values measured in the
simulated 3-dimentional graphs. The average
value and the error difference of the clinical
parameters of the subdivided datasets with
respect to the dataset 1 are indicated in Table
2:

TABLE I
(NUMERICAL CALCULATION OF THE MEASURED CLINICAL PARAMETERS)
Type ECG Airflo

w
BP
ratio

GSR
index

Measure
d value 1.02 1.03 4.91 2.64
Calculat
ed value 1.025 1.03 3.395 1.97
Error
Differen
ce

0.005 ⋍ 0 0.0 1.51 0.67

Percent
age of
error

0 0 44.47 34.01

The error values of the COVID patients’ clinical
parameters measured by the proposed model
is varies in division. The error calculation of the
ECG and the airflow parameters of the patients
is zero. But the error value of the BP ratio and
GSR index is 44.47% and 34.01% respectively.
So, the average value of the percentage of
error is 55/58, 45/12, 1, 1

5 = 19.62%. From this

observation, it could be concluded that
multidimensional visualization is mainly works
on non-dependable clinical parameters. Due to
more fluctuation on BP ratio and GSR index for
health measurements, the error is instable and
oscillates with respect to more clinical
parameters of the COVID disease.
CONCLUSION
This technique is strictly based on time-
divisional approach which mainly considered
the multivariate statistical parameters of
clinical inferences. The medical conditions of
COVID patients’ measured by different sensors
and devices are exercised through
multidimensional data architecture model for
both doctors and hospital perspectives. This
analysis of the COVID patients’ dataset had
been structured with the help of visualization
technique in XLStat tool. The interconnectivity
between the doctors and hospital authorities
would be minimized for fundamental accesses.
By this technique, one’s data could not only be
subdivided into multiple parts or integrated
multiple factors into one block but also the
overall scenario of COVID could also be
examined by expertise easily. In other words,
the management and doctors both could
visualize and manage the data according to
their requirements. The monitoring of the
patients by this system could also allow the
facility manager to prevent any further
contaminative situation in the hospital. So, it
would be obvious that an intelligent and robust
visualization method would be required for
further visual scrutiny to understand the status
of the COVID scenario better definitely for both
the stakeholders.
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