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Abstract - Assessment of structural health is
essential for safe and efficient functioning of
built environment. Physical inspection of
structures for its health monitoring is time
consuming, costly and risky. Advances in
image capturing and processing techniques as
well as numerical simulation tools have made
computer vision a cost effective and accurate
alternative for structural health assessment.
Evolution of convolution neural network (CNN)
has reduced human effort and made it easy to
develop algorithms for identification of
structure defects. One of the primary defects
in concrete is crack. Concrete cracking occurs
due to many reasons like shrinkage, heaving,
premature drying, excessive loading etc. and
it leads to reduction in strength of structures.
This paper presents a computer vision system
developed for crack monitoring of concrete
cubes subjected to compressive loading.
Camera is used to capture real time images
when concrete cubes are subjected to loading.
Images are further processed using CNN to
obtain various features of cracks like
numbers, location, length, area etc. Present
Computer vision system is developed using
LabVIEW and implemented using tensor
processing unit (TPU) for better computational
efficiency. The outcome of present system
demonstrated better and accurate real time
monitoring of cracking when concrete is
subjected to loading. Proposed computer
vision system can be implemented for
structural health monitors of real-life civil
engineering structures like buildings and
bridges.
Keywords - Artificial intelligence; convolution
neural network; computer vision; digital
image processing; concrete crack detection;
structural component health monitoring.

INTRODUCTION
oncrete is one of the widely used
construction material, made of various

cementitious materials and aggregates. There
can be several causes for failure of concrete.
Cracking in concrete indicate deterioration in

strength and warn against possible failure.
Physical inspection of concrete structures and
crack monitoring help in assessment of
strength. In alternate to physical inspection,
images of critical locations can be captured by
cameras and processing of images gives data
about current condition of structures. With the
proper interpretation of collected data and
artificial intelligence, residual strength of
structural elements can be predicted and if
required, they can be strengthened for
increased life span of structure. This technique
doesn’t need any equipment rather than visual
input equipment so it is easier and economical
to identify cracks. Generally concrete
contribute major strength in compression and
steel reinforcement is used for satisfying
tension strength requirement of structure.
Artificial intelligence (AI) is a broad term for
the simulation of human intelligence in
computers. Artificial Intelligence is the capacity
of computers to think and behave in the same
way as humans do. Machine learning and deep
learning are two subcategories of AI. Machine
Learning is the branch of Artificial Intelligence
that allows a machine to learn on its own
without having to be specifically programmed.
There are a variety of machine learning
algorithms that evaluate the data and
generate a function to predict an output based
on the new inputs.
In 2003, Hung and Voloshin [1] developed a
fast and simple (FAS) detection algorithm
based on digital image correlation (DIC) for
measurement of the surface deformation of
planar objects. The concept of finite element
method (FEM) was applied by Sun et al.[20] to
determine the complete, two-dimensional
displacement field during the image correlation
process on digital images. They used both
numerical studies and a real experiment to
verify the proposed formulation and showed
that the image correlation with the finite
element formulation is computationally
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efficient, accurate, and robust. In 2006,
Besnard [12] et al. introduced the concept of
multiscale approach on top of FEM based DIC
method to generate meaningful solution for a
fine texture and large initial displacement
measurement. In 2011, Nguyen et al. [13]
developed a new automated method of
fracture identification and quantification based
on standard DIC approach. An automatic crack
detection system was proposed by Zhang et al.
[14] by employing a coarse-to-fine
methodology that also included concepts like
Region of Aggregation (ROA) and Region of
Belief (ROB) for segmentation and localization
of cracks. Chambon and Moliard [19] proposed
a new approach to image-based crack
detection, GaMM, based on a multi-scale
extraction and Markovian segmentation, which
reduced the percentage of false positives in
comparison to morphological methods that
combine thresholding and refinement by
morphological analysis. Xie et al. [15]
demonstrated the potential for Deep Learning
based pavement crack detection by applying
ConvNets on a dataset of 500 images of size
3264  2448, collected using a low-cost
smartphone. Ying and Salari [16] proposed a
beamlet transform-based technique for
pavement crack detection and classification,
which was more robust in extracting linear
features in the presence of noise. Oliveira and
Correia [17] proposed an integrated system,
CrackIT, for automatic detection and
characterization of cracks in flexible pavement
surfaces using a combination of unsupervised
learning (clustering) followed by supervised
learning (classification), thus eliminating the
need for manually labelling the samples. It was
noted that although CrackIT was able to detect
multiple cracks in the same image, it had
difficulty in dealing with cracks less than 2 mm
width. Based on the fact that crack pixels in
pavement images had distinct grayscale
intensities compared to their surrounding non-
crack pixels, Cheng et al. [18] proposed a
pavement crack detection algorithm based on
fuzzy logic. Feng et al.[21] proposed a deep
active learning strategy for civil infrastructure
defect detection and classification, where they
used a deep residual network (ResNet) to train
a small set of images with defect labels and
use this low-accuracy defect detector to filter
out many non-defect images.
The ageing civil infrastructure (e.g., tunnels
and bridges) is a common problem in many
developed countries such as the United States
and Japan. According to (ASCE 2013), one

ninth of the 607,380 bridges in the U.S. were
structurally deficient and required a $20.5
billion annual investment for fixing the
problems by 2028. While in developing
countries like China and India, more civil
infrastructure is being built. To efficiently
monitor and maintain such a large number of
existing civil infrastructure is critical yet
challenging for both safety and economic
reasons.
This paper presents application of computer
vision technique for crack identification in
concrete cubes subjected to compressive
loading. The developed system includes
camera for image capturing, CNN for crack
identification from captured images
implemented through LabView and TPU. The
presented system can be easily implemented
for real time monitoring of concrete structures.

CRACK DETECTION METHODOLOGY IN PROPOSED SYSTEM
Deep learning refers to the process by which
computers can imitate human behaviour. They
make use of neural networks, which are multi-
layered systems inspired by the human brain's
structure. One of the most popular image
recognition algorithms used in deep learning is
the convolutional neural network. It takes an
image as input and processes it so that
different aspects of the image can be
distinguished from one another. They use
artificial neurons, which are mathematical
functions that measure the weighted number
of multiple inputs and outputs an activation
value and are modelled after neurons in the
human brain.
The conventional image processing method
does not work well in the detection of cracks in
concrete structures as the intensity range of
cracks and non-cracks in the concrete block is
almost similar. Further, as the load increases
on concrete specimen, the area of the crack
increases and it merges to become a longer
crack so, area-based filtering of the non-crack
block is quite challenging. CNN improves this
task by combining the output of different
trained convolutional networks in a fusion
multi-Layer perceptron and the features
present in the feature map extracted by the
convolution layer are summarized by the
pooling operation.
A. Convolutional Neural Network
Convolutional Neural networks, also known as
ConvNet or simply CNN, are a deep learning
algorithm, which mainly finds its applications in
visual imagery tasks. It can take an image as
an input and can identify and differentiate
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various features from it. The Convolutional
Neural networks were inspired by the human
brain and have a structure analogous to the
neuron connectivity pattern in human brains.
They are composed of multiple layers of
artificial neurons, which are mathematical
functions that calculate a weighted sum of
inputs and outputs a possibility score or
activation value.
1) Architecture of CNN: The convolutional
neural networks have many layers and try to
extract different features from the input image.
The starting layers try to find basic features
and the complexity increases as we go deeper
into the network. Each layer has three
dimensions, height, width and depth.
2) Convolutional Layers: The convolutional
layers try to find the high-level features from
an input image such as edges. These are the
starting layers of a convolutional network and
there can be more than one convolutional
layer in the network. They start by extracting
the low-level features such as edges, color,
etc. and as we go deeper to other
convolutional layers, the network adapts to
extract more complex features.
3) Pooling Layer: The pooling layer tries to
reduce the spatial size of the convolved
feature to reduce the computational power
required. It also extracts the more dominant
features, that are invariant to rotation and
position. Pooling is of two types, Max Pooling,
and Average Pooling.
4) Max Pooling: It returns the maximum value
from the portion of the image covered by the
filter.
5) Average Pooling: It returns the average
value.
6) Classification Layer: The classification layer,
also known as the Fully Connected Layer, are
the final layers of the convolutional network in
which the output of the pooling layer acts as
the input and uses a SoftMax function to
calculate the final possibility probabilities of
the input. Complete CNN architecture is shown
in Fig. 1.

Fig. 1 Architecture of Convolutional Neural Network

Kumar and Ghosh [2], used a Ducal Channel
Convolutional Neural Network model for crack

detection in concrete. A dataset of 3600
images containing cracks and non-cracks with
a dimension of 256256 pixels was prepared.
The primary network used was a single-
channel convolutional neural network (SCNN)
in which feature extraction was done using
intermediate max-pooling layers. The model
was trained with a learning rate of 0.0005 and
achieved an accuracy of 90.5%. For making
the model robust, data augmentation was
performed using random rotations, shifts and
zooming. This led to a drop in accuracy to
82.25%. For optimizing this model, they
introduced a second channel, which had
shallow network structure and skip
connections, thus making the model to be a
Dual-channel Convolutional Neural Network.
The new model was trained with 6400 images
at a learning rate of 0.0005 and achieved an
accuracy of 92.25%. The average time taken
by each epoch was 159.031 seconds.

EDGE COMPUTATION
Edge computing is changing the way data is
being

handled, processed and then delivered from
many devices all over the world. The
tremendous growth of internet-connected
devices – the IoT – alongside new applications
that needs real-time computing power,
continues to drive edge-computing systems.
Faster networking technologies, like 5G
wireless, are allowing edge computing systems
to accelerate the creation or support of real-
time applications, like video processing and
analytics, self-driving cars, AI and robotics.
Edge computing simply provides information
processing close to the edge that is data
gathered through IoT devices are passed
through the edge computing devices to act like
a gateway where data are interpreted quickly
before being pass through the internet to be
sent to a server or cloud storage for further
processing if necessary or just for data-
keeping. To achieve high-speed data
transmission, google has launched hardware
called Edge TPU (Tensor Processing Unit) that
can be connected by just using a USB
connection. TPU is an AI accelerator
application-specific integrated circuit (ASIC)
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developed specifically for neural network
machine learning in the TensorFlow ML library.

PROPOSED COMPUTER VISION SYSTEM FOR CONCRETE
CRACK MONITORING
Fig. 2 shows a complete block diagram of
proposed computer vision system
implemented at Heavy Structures Laboratory
of Nirma University for compression testing of
concrete cubes. In this system, for crack
detection model, the previously re-trained
Inception v3 model is used along with a
LabVIEW GUI especially developed for crack

detection. It follows the same methodology but
with a few changes. The input image is read by
the LabVIEW and is
Fig 2. Concept Block Diagram

processed in LabVIEW itself. The input image is
first converted into a greyscale image and then
to a binary image. Contours are found in the
binary image using LabVIEW only. Using the
bounding box coordinates of the found
contours, different regions of interest are
extracted from the greyscale image. All these
steps are performed on LabVIEW platform.
After extracting the contours, each contour is
now passed to the CNN-based re-trained
Inception v3 model to classify them as crack or
non-crack and to obtain a prediction score for
each contour. The final output is again
displayed in the LabVIEW GUI with all the
contours found and classified as crack or non-
crack. The complete flowchart of crack
detection using Control panel unit(CPU)+tensor
penal unit(TPU) with NI Labview, python and
Tensorflow is shown in Fig. 3.
Fig. 3 Flowchart of crack detection performed using a
custom CNN model on a CPU + TPU with NI LabVIEW,

Python and TensorFlow

The LabVIEW Graphical User Interface (GUI)
developed in this system has the facility to
select whether the model is to be run on CPU
alone or CPU + TPU. Based on the selection, if
CPU alone is selected the re-trained inception
v3 model with python is used, and if the CPU +

TPU option is selected, then the re-trained
inception v3 edge TPU compatible model is
used for crack detection purposes. The GUI
also has an option using the crack detection
model in live stream mode in which the images
of the concrete block are captured by the
camera in real-time and sent to the crack
detection model along with the real-time load
applied on the concrete block. If live stream
mode is not selected then images and load cell
data are read from a saved folder on the
server device. LabVIEW analyses different
characteristics of cracks like the number of
cracks and area of cracks and plots a graph of
Load vs Number of Cracks, Load vs Crack
Length, Load vs Area of Cracks and Load vs
Time. Fig. 4 presents screenshot of proposed
system showing image information like no. of
cracks. Along with crack information, preview
of images is given so that the portion of the
cube to be focused can be changed.

Fig. 4 Concrete Crack Detection Model Result

Various graphs produced in the system for
crack analytics like Load v/s Number of cracks,
Load v/s Crack length, Load v/s area of crack
and Load v/s time are presented in Fig. 5.

Fig. 5 a) Load vs Number of Cracks, b) Load vs Crack
Length, c) Load vs Area of Cracks and d) Load vs Time

Above data obtained from proposed Computer
Vision System helps in assessment of
structural health of concrete structures.
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CONCLUDING REMARKS
The computer vision system proposed in this
paper perform repetitive and monotonous
tasks of concrete structure ealt monitoring at a
faster rate and simplifies the work of manual
inspection. Several tasks of health monitoring
can be automated without the need for human
intervention. Computer vision systems that
have been trained very well will commit zero
mistakes in crack detection and result in faster
delivery of high-quality outcomes.
When run with LabVIEW in CPU (central
processing unit) + TPU (tensor processing unit)
mode, the best accuracy is achieved with a re-
trained Inception v3 model, updated to Edge
TPU compatible model, with an accuracy of
93.20 percent. A LabVIEW user interface is
developed in this system. The input images are
first processed by LabVIEW to extract different
contours, and then each contour is analyzed by
a re-trained Inception v3 model to determine
whether they are crack or non-crack. LabView
also included a feature called Camera Mode
(live-stream crack detection), which uses a
camera's live feed to detect cracks in concrete
blocks. Load vs. Number of Cracks, Load vs.
Length of Cracks, and Load vs. Area of Cracks
graphs are also available from this system,
which are very useful for health monitoring.
Google Coral Edge TPU is used in this system
to boost the computational power. Based on
the comparison of the computational time
required to process an image using a CPU and
a CPU + TPU combination, it is observed that
the use of TPU greatly reduced the
computational time.
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