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Abstract:  

Alloy steel has many forms each having different properties due to the elements added to the steel. When treated 

with heat, these elements impart a wide range of physical properties incomparable to any metals/alloys. In the 

present work, the artificial intelligent (AI) technique namely, artificial neural networks (ANN) is utilized to model 

the true stress (τ) of ultra-strength Cr-Mn-Si-Ni ultra-strength alloyed steel in terms of holding time, heating rate, 

tensile temperature (Tts) and strain rate (γ). Neural networks are trained iteratively by adjusting the connections 

between nodes and the weight. A well-trained network can effectively predict the target. The developed ANN-

based model is compared to the commonly employed multiple regression (MR) model in terms of statistical 

parameters. The coefficient of determination (R2) values for the ANN and MR models are 0.9948 and 0.2924 on 

the other hand average absolute relative error (AARE) are observed as 3.6%, and 56.16% respectively. The results 

thus obtained show that the ANN-based model has higher accuracy with greater generalization. 

Keywords: Ultra-strength steel; artificial neural networks (ANN); multiple regression (MR); average absolute 

relative error (AARE); coefficient of determination (R2). 

 

1. Introduction 

Steel has several types of alloys ranging from 

stainless steel to high temperature steels with flat 

carbon products are there. Due to some enviable 

characteristics such as low cost, fast and easy 

installation, high strength, stiffness, lightness and 

mass production, etc., steel is utilized for the 

production of many products and in the construction 

of buildings and automotive bodies. The properties 

of all alloy steels depend up on the elements added 

to the steel. Alloy steels and plain carbon steels are 

mainly two kinds of steels. Metals or other elements 

with different proportions are combined with steel 

for the production of alloy steels1,2. Steels are 

basically the alloys of iron and carbon. When treated 

with heat, a wide range of physical properties 

incomparable to any metal/alloys are produced. 

There are numerous benefits of alloys such as the 

introduction of magnetic properties, corrosion and 

electrical resistance, hardness at red heat, low 

coefficient of expansion, etc. With the inclusion of 

one or more metals a broad span of mechanical 

properties are available which are likely to beat any 

specific qualities. Therefore, it is viable to build 

more elasticity, toughness or hardness. However, 

most important is the prospect of achieving high 

tensile strength but with slight decrease in ductility. 

Besides, for plain carbon steels with the rise in 

strength there is a rise in carbon resulting in a decline 

in ductility. 

Artificial intelligence techniques such as artificial 

neural networks (ANN) in particular, are an efficient 

technique to predict optimal conditions as it does not 

include any assumptions or simplifications. ANN 

mimics the processes of human learning. Neural 

networks are trained iteratively by adjusting the 

connections between nodes and the weights. A well-

trained network can effectively predict the target. 

For large input datasets it has many advantages over 

the conventional statistical methods. It does not 

require presumed mathematical equations to show 

the relationship among the model inputs and 

corresponding outputs and can automatically detect 

the hidden relationships or patterns between input 

and output present in the data to find out the model 

structure3-5. Any continuous function can be 

approximated to the desired accuracy with large 

number of hidden neurons by ANN. Using this 

intelligent method for evaluating true stress-true 

strain curve has not been done and to best of authors’ 

knowledge no work in the open literature is reported 

till now. 

In the current study, ANN has been used for the 

prediction of true stress for ultra-strength Cr-Mn-Si-

Ni alloyed steel. ANN model has been compared 

with multiple regression (MR) model on the basis of 

statistical measures6. Zhang et al.7 performed the 

tensile tests experiment of Cr-Mn-Si-Ni alloyed steel 

using the parameter were tensile temperature (oC) 

[25-900], Heating rate (10 oC/s), Isothermal holding 

time (120 s) and Strain rate (s-1) [0.0005-0.01]. These 
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experimental data have been utilized to develop the 

models and validate them. 

 

2. Artificial Neural Networks (ANN)  

Artificial neural networks (ANNs) process the 

information in parallel as inspired by human nervous 

system. ANN was first introduced by McCulloch 

and Pitts.8 ANNs have the ability to learn from the 

experiences like humans. ANN is composed of 

artificial neuron as nodes or units. Each unit is 

connected to other by its weight. Processing units 

and its weight are summed up with an adjustable bias 

unit. This summed response goes to some transfer 

(activation) function9,10 and the output is thus 

produced. Figure 1 represents an artificial neuron 

with multiple inputs. ANN processing depends on 

weights or learning, network topology, and the 

activation function. They are also termed as the 

building blocks of ANN. 

 

 

 

 

 

Fig. 1: An artificial neuron 

 

2.1 ANN Modelling Procedure 

The procedure needed for the development of the 

ANN model is described via flowchart11-14 exhibited 

in Figure 2. Firstly, dataset in the form of 

independent and dependent variables is collected for 

a process and then the complete dataset is 

preprocessed (data normalization or scaling and 

sometimes outliers are also needed to be removed). 

The total dataset is then partitioned into two sets as 

training and test sets. The second step involves the 

optimum structure of ANN i.e., the type of ANN, 

number of neurons at the input layer, number of 

hidden layers and the output layer, type of activation 

function at the hidden layer and the output layer are 

defined. After the network structure is finalized, 

neural networks training is done by adjusting 

weights and bias, checking the generalization 

performance and training process is finish with post 

training analysis and the developed ANN model 

performance is analyzed using test set on the basis 

of some statistical parameters. ANN is now ready 

for prediction. 

 

3. Development of ANN model 
 

In the present study, the true stress of ultra-strength 

alloyed steel has been predicted by ANN with pure-

linear, log-sigmoid and tan-sigmoid activation 

functions. The complete dataset consisting of 223 

samples was retrieved from the available published 

literature7. Then it was partitioned into 80% (178 

data points) and 20% (45 data points) as the training 

dataset and the test dataset, respectively. The 

developed ANN models have been evaluated and 

validated with respect to statistical measures and 

then their performance has been compared with the 

widely employed multiple regression (MR) model. 

 

3.1. Assessment of ANN model 

Artificial neural networks with forward feed were 

used in the present study. It is represented in Figure 

3. It comprised of three layers. They were basically 

the input layer consisting of all the independent 

variables, hidden layer and the output layer 

consisting of the dependent variable. Neural 

network architecture 4-10-1 was employed for 

modeling the true stress of alloyed ultra-strength 

steel with 4 neurons for holding time (s), heating rate 

(°C/s), tensile temperature (°C), and strain rate (s-1) 

at the input layer. The hidden layer consisted of 10 

neurons and 1 neuron was for the output layer. Input 

and output layer neurons were fixed according to 

specific problem whereas hidden layer neuron was 

selected by trial-and-error procedure because 

inadequate number of neurons give rise to under 

fitting whereas more neurons may result in over 

fitting15-17. The ANN model training was done until 

the mean square error (MSE) was minimal 

subsequently comparing the actual experimental 

values with the network output18,19. A properly 

trained model achieves highest values of coefficient 

of correlation (R) approximately to 1 and lowest 

MSE. MATLAB 2015 mathematical software with 

the ANN Toolbox was used to carry out all the 

computation. 

 

 
Fig. 2. ANN modelling procedure 
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Fig. 3. Schematic topology of 4-10-1 ANN 
architecture. 

Table 1 exhibits the MSE and R values for different 

network architectures. After several simulation 

experiments, it was found that the network structure 

4-10-1 with Levenberg-Marquardt ‘trainlm’ training 

algorithm exhibited the best predictability with 

minimum MSE value and the maximum value of R.  

Table 1. Performance parameters of various 

network structures trained using Levenberg-

Marquardt ‘trainlm’ algorithm 

 
Network 

Structure 

Training Testing 

Input-

hidden-

output 
layer 

Correlation 

coefficient 

(R) 

Mean 

square 

error 
(MSE) 

Correlation 

coefficient 

(R) 

Mean 

square 

error 
(MSE) 

4-2-1 0.900264 482.1432 0.932258 274.29105 

4-4-1 0.954193 212.4739 0.953369 280.40387 

4-5-1 0.988089 65.9339 0.974146 95.77393 

4-8-1 0.983268 72.32596 0.986103 55.98957 

4-10-1 0.990376 48.46865 0.991143 41.48313 

4-12-1 0.98279 69.10040 0.984184 70.16034 

4-15-1 0.956008 206.61867 0.958719 263.98404 

4-18-1 0.986416 72.53314 0.980613 77.64014 

4-20-1 0.987465 58.33295 0.988656 79.51751 

 

The ANN model predicted true stress values for 

ultra-strength alloyed steel were compared to the 

experimental values of the training set and the test 

set as revealed in the Figure 4. The predicted data 

points are found to lie near to the ideal fit line. The 

adequate selection of neuron results in much 

improved performance than the MR model. Further, 

the model output is compared with the experimental 

data for each run in Figures 5 and 6, respectively. 

The predicted data overlaps the true stress 

experimental data for most runs. Comparison of 

statistical parameters for the predicted training set 

and test set are depicted in Table 2. These 

parameters are found in close proximity to each 

other. On the basis of the analysis of Figures 4, 5 and 

6 and the Table 2, the ANN-based model gives a 

superior prediction performance with high 

generalizability. Moreover, the test dataset results 

are much improved than those of the train dataset. 

 

Table 2. Statistical measures for ANN model of 

training and test sets. 
Statistical measures Train data Test data 

AARE (%) 5.65 3.6 

R2 0.9897 0.9948 

RMSE 7.0025 5.1485 

SD 3.1417 0.0275 

MRE 0.0565 0.036 

𝑄𝐿𝑂𝑂
2  (Train data), 𝑄𝑒𝑥𝑡

2  (Test data) 0.9793 0.9891 

 

 
Fig. 4. ANN simulation of the true stress for ultra-

strength alloyed steel using optimal parameters for 

training set and test set. 

 

 
Fig. 5. Training course curve of the true stress for ultra-

strength alloyed steel. 

 

Fig. 6. Test course curve of true stress for ultra-

strength alloyed steel. 
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3.2.  ANN Model Versus the MR Model 

The MR model was developed with 178 samples of 

training dataset to predict the stress that depends on 

holding time (x1), heating rate (x2), tensile 

temperature (x3), and strain rate (x4). 

The MR model equation thus obtained is given 

below: 

𝒚 = 𝟏𝟏. 𝟑𝟑𝟏𝟑𝒙𝟐
−𝟑.𝟎𝟖𝟔𝟔𝒙𝟑

𝟎.𝟎𝟗𝟒𝟓𝒙𝟒
𝟎.𝟕𝟔𝟏𝟑 

In the regression, the independent variables were 

observed to be significant. 

The predictability of the ANN model with pure-

linear, log-sigmoid, tan-sigmoid activation 

functions at the hidden layer is compared with the 

MR model in Table 3 based on the test set. The ANN 

model with tan-sigmoid activation function is found 

to have the highest R2 value and gives the lowest 

MRE, SD (standard deviation), RMSE (root mean 

square error), and AARE (average absolute relative 

error) values among the four models. Further, the 

parity plot of the true stresses for the four models 

displayed in Figure 7 utilizing the test set, clearly 

shows that the ANN model with tan-sigmoid 

activation function predicts the data point more 

accurately than the other three models with least 

scatter from the ideal fit line. All this goes on to 

show that the ANN model with tan-sigmoid 

activation function is having the highest accuracy 

and generalizability and therefore gives superior 

prediction performance. 

Table 3. Statistical evaluation of ANN and MR 

models for test set. 
Statistical 

measures 

ANN-

PURELIN 

model 

ANN-

LOGSIG 

model 

ANN-

TANSIG 

model 

MR 

model 

AARE (%) 24.77 11.11 3.6 56.16 

R2 0.2837 0.9602 0.9948 0.2924 

RMSE 42.21907 10.6853 5.1485 69.6088 

SD 23.6132 4.8269 0.0275 2.3534 

MRE 0.2477 0.9055 0.0358 0.5616 

 

The true stress values for the ultra-strength alloyed 

steel as predicted via MR and ANN models in terms 

of AD for the training set are given in Table 4. It was 

observed that almost 89.33% data points predicted 

via ANN-based model lie below 10% AD and 

96.07% of the total data points lie within 20% AD. 

Above 20% AD there are only 3.93% data points. 

However, for the MR model, 14.01% data points are 

predicted within 10% AD and 32.55% of the total 

data points lie below 20% AD. Above 20% AD there 

are 67.45% data points. Therefore, it can be said that 

the ANN-based model predicts excessively huge 

percentage of data with a little error margin. 

The true stress values for the ultra-strength alloyed 

steel as predicted via MR and ANN models in terms 

of AD for the test set are given in Table 5. It was 

found that almost 97.78% data points predicted via 

ANN-based model lie below 10% AD and the entire 

data points lie below 20% AD. Whereas, 8.89% data 

points are predicted by MR model within 10% AD 

and 11.11% of the total data points lie below 20% 

AD. Above 20% AD there are 88.89% data points. 

This depicts that the ANN has high accuracy and is 

very generalized for the unseen test dataset as well. 

This is because of the selection of optimum 

parameters of the developed model i.e., tan-sigmoid 

activation function at the hidden layer, optimal 

number of neurons, and the Levenberg-Marquardt 

training algorithm. 

 

4. CONCLUSIONS 

The comparative study, training and test course 

curves, and the statistical evaluation parameters 

values, point to the high predictability of the ANN 

model as compared to the MR model. It means that 

MR model has the poor prediction performance. It 

also emphasises that the ANN-based model with 

tan-sigmoid activation function simulates the best 

among the three activation functions used namely, 

pure-linear, log-sigmoid and tan-sigmoid.  

 

Table 4. Percentage distribution of the true stress 

data via MR and ANN-based models in terms of 

AD for training set. 

 

 

AD (%) % of MR 

model 

predicted 

values 

Cumu

-lative 

score 

% of 

ANN 

model 

predicted 

values 

Cumu

-lative 

score 

AD< 10 14.01 14.01 89.33 89.33 

10<AD< 20 18.54 32.55 6.74 96.07 

AD>20 67.45 100 3.93 100 

Total 100  100  

Fig. 7: Comparison of the MR with the ANN models 

for predicting the true stress of ultra-strength alloyed 

steel using test data. 
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Table 5. Percentage distribution of the true stress 

data via MR and ANN-based models in terms of 

AD for test set. 
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