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Abstract:  

Vapor-Liquid Equilibrium data is crucial for separation processes like distillation, extraction and manufacturing. 

Obtaining this data experimentally for desired conditions and systems is time-consuming and expensive. 

Therefore there is a necessity for an a priori generalized model which predicts this data based on the molecular 

descriptor information (of the desired system) given as an input to the model. This model is based on the Non-

Random Two-Liquid (NRTL) model to predict binary interaction (NRTL) parameters. These predicted parameters 

are, in turn, used to calculate the activity coefficient, which is used to calculate the vapor-phase composition from 

the liquid-phase composition of the system. In this study, the molecular descriptors for individual components of 

the 28 binary systems were generated. The arithmetic mean of the molecular descriptors of the corresponding 

components was used as the molecular descriptor set for that binary system. The molecular descriptors based on 

properties relevant to vapor-liquid equilibrium were selected and used as independent variables to build the model 

using an Artificial Neural Network (ANN) in python. Better predictions were obtained with the coefficient of 

determination greater than 0.85 for each NRTL parameter. Once the liquid-phase composition is known, the model 

can predict the vapor-phase composition at the desired pressure and temperature. 
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Introduction: 

Information about thermodynamic properties 

and phase equilibria of mixtures are essential for 

designing industrial processes like distillation, 

extraction, separation, designing new cost-effective 

processes, synthesis of new materials, and 

technological advancements. Experimenting to 

determine properties takes time, money, energy and 

effort1. As a result, theoretical and empirical 

thermodynamic property models are required, with 

experimental data used to predict properties. 

However, these models only succeed when 

insufficient or no experimental data is available, so 

developing a generalized property model to predict 

properties is critical. 

The fugacity and activity coefficient must be 

considered since, in reality, most mixtures behave 

non-ideally. However, the method for calculating 

phase equilibrium in systems that are non-ideal in 

the liquid phase only is based on activity coefficient 

models such as Margules, Van Laar, Wilson, NRTL, 

UNIQUAC, and UNIFAC. In contrast, non-ideality 

in the vapor phase is described using equations of 

state models such as the Van der Waals Equation, 

Redlich Kwong Equation, Redlich Kwong Soave 

Equation, and Peng Robinson Equation at higher 

pressures2.  

Ravindranath3 developed a structure-based 

generalized model for predicting pure-fluid vapor 

pressures, saturated phase densities, and binary 

mixture vapor-liquid equilibrium. Linear and non-

linear (back-propagation network) NRTL and 

UNIQUAC models were used. Gebreyohannes4 

worked on a generalized predictive model for Non-

Random Two-Liquid binary interaction parameters. 

The molecular descriptor values of the binary 

systems were taken as the absolute difference 

between the corresponding molecular descriptor 

values of the component molecules in the systems. 

Furthermore, in this study, a modified NRTL model 

was taken, in which only one parameter was used, 

which was used to prevent different prediction 
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models for different binary interaction parameters 

(for example, different models for aij and aji), as that 

could give different values for the same parameter 

depending on the order of components taken. In the 

present work, the molecular descriptor values of the 

binary systems were taken as the arithmetic mean of 

the corresponding molecular descriptor values of the 

component molecules in the systems. A standard 

NRTL model was used in the present work. 

Different predicting models were made for different 

binary interaction parameters by taking a particular 

order of components based on their boiling points. 

The “i” component was considered to have the lower 

boiling point, and the “j” component was considered 

to have the highest boiling point between the 

system's two components. 

The local composition method parameters are 

temperature-dependent, which makes them 

applicable to any temperature. In contrast, the 

parameters apply only to a given temperature range 

in simple empirical methods. The local composition 

method's multi-component behaviour can be 

obtained from binary data. In contrast, simple 

empirical methods are restricted to binary systems. 

The local composition methods consider that local 

compositions are different from bulk composition, 

which is the case when the interaction among similar 

molecules is different from between molecules of 

one component and the other. In contrast, the simple 

empirical methods do not differentiate between local 

and bulk compositions5.  The present work obtained 

the activity coefficient using a non-random two-

liquid (NRTL) local composition model. 

Where, 𝜏𝑖𝑗 =  𝑎𝑖𝑗 +  
𝑏𝑖𝑗

𝑇(𝐾)
 and 𝐺𝑖𝑗 =  𝑒−𝑐𝑖𝑗𝜏𝑖𝑗 

The activity coefficient of component ‘i’ is 

represented by γi. The binary interaction parameters 

for the local domain are aij, bij, and cij, with the 

molecule of component ‘j’ as the center surrounded 

by molecules of component ‘i’. Gij and τij represent 

the adjustable parameters for the local domain, with 

molecules of component ‘j’ in the center and 

molecules of component ‘i’ surrounding it. The 

component's mole fraction in the liquid phase is 

represented by 'x.' 

The prediction model for the parameters aij, bij and 

cij correspond to the local domain where the “j” 

component molecule is at the center, surrounded by 

the “i” component molecules and the prediction 

model for the parameter aji, bji and cji corresponds to 

the local domain where the “i” component molecule 

is at the center, surrounded by the “j” component 

molecules. Because of this reason, aij and aji are not 

equal to each other. Similarly, bij, cij and bji, cji and are 

not equal. 

 

 

Materials and methods:  

A set of 28 binary mixtures containing Acetone, 

Benzene, Chloroform, Ethanol, Methanol, Toluene, 

Water and p-Xylene are considered. The SMILES 

format files of molecular properties for each 

component in the systems were obtained from the 

ChEMBL online database6. The SMILES format 

files were used as input for the paDEL software7, 

which was used to generate the molecular descriptors 

data for each component in the systems. 1444 

molecular descriptors were obtained in total. The 

arithmetic mean of the corresponding molecular 

descriptor values of the components of the binary 

systems was taken as their molecular descriptor 

values. This was done to make the model applicable 

to systems of the same component. 

A set of relevant molecular descriptors (those 

representing chemical bonds and functional groups) 

were shortlisted for this work based on their 

properties. These molecular descriptors’ data were 

preprocessed by discarding those descriptors whose 

value was zero (0) for all the binary systems and 

those that had ‘NaN’ values. A final set of 162 

molecular descriptors was obtained, and these 

descriptors were the independent variables, and the 

NRTL parameters (aij, bij, cij, aji, bji and cji) were the 

dependent or target variables in the respective 

models. 

While making the 28 binary systems (from 

Acetone, Benzene, Chloroform, Ethanol, Methanol, 

Toluene, Water and p-Xylene), “i” component was 

considered to have the lower boiling point and “j” 

component was considers to have the highest boiling 

point between the two components of a system. 

Other ways might be to take the reverse of it or use 

any other property (like the molecular weight of the 

molecule, etc.) to assign “i” and “j”. The purpose of 

classifying “i” and “j” based on a specific property, 

and not randomly chosen, is to have uniformity in the 

model and to get more ordered results. The binary 

interaction parameters database for the 28 binary 

compound systems was taken from Appendix B8. An 

Artificial Neural Network (ANN) was trained in 

Python (Jupyter Notebook - Anaconda platform) for 

the NRTL parameters aij, bij, aji, bji, cij and cji to 

determine the relationship between these parameters 

and the appropriate molecular descriptor set.  

 

Results and Discussions:  

The Train dataset consists of 16 binary systems. The 

Validation dataset consists of 6 binary systems, and 

the Test dataset consists of 6 binary systems. 

ln 𝛾𝑖 =  
∑ 𝑥𝑗𝜏𝑗𝑖𝐺𝑗𝑖𝑗

∑ 𝑥𝑘𝐺𝑘𝑖𝑘

+  ∑
𝑥𝑗𝐺𝑖𝑗

∑ 𝑥𝑘𝐺𝑘𝑗𝑘

(𝜏𝑖𝑗 − 
∑ 𝑥𝑚𝜏𝑚𝑗𝐺𝑚𝑗𝑚

∑ 𝑥𝑘𝐺𝑘𝑗𝑘

)

𝑗
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Initially, when the first few random states (random 

numbers that vary the composition of train and test 

datasets) were used (starting from 0), negative 

values of coefficient of determination (R2, a metric 

to measure the accuracy of the prediction, ranging 

from 0 to 1, where 1 stands for highest accuracy) 

were obtained, which occurred due to insufficient or 

incomplete learning from the train dataset used in 

that random state. Then, iterations were run up to 

10,000 random states for ANN. The Train and Test 

dataset combination that gave the highest coefficient 

of determination value was taken to train the model. 

Table 1. Parameters and their Corresponding Coefficient 

of Determination and Random States 

Binary 

Interaction 

Parameter 

Coefficient of 

Determination 

Random 

State 

aij 0.989 1670 

aji 0.880 3074 

bij 0.955 9053 

bji 0.873 4566 

cij 0.904 8243 

cji 0.886 2158 
 

Conclusions: 

The coefficient of determination obtained with 

ANN was greater than 0.85 for all NRTL parameters.  

Thus, these models can be used to get reliable 

predictions of the NRTL parameters of binary 

systems when their molecular descriptors data is 

given as an input. When the liquid-phase 

composition and temperature are known, the 

predicted NRTL parameters can be used to calculate 

the activity coefficients of the binary systems using 

the NRTL equation, which can then be used to 

calculate the vapor-phase composition using the 

modified Lewis-Randall rule. 
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