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Abstract 

In the present work, N, N- Dibutyl diglycolamide functionalities were covalently grafted over Merrifield resin by following novel 

green chemistry principles during the entire process of synthesis. Minimal use of hazardous chemicals, improved yields and moderate 

reaction conditions were the bedrocks throughout the process. This grafted resin was used as an adsorbent for the uptake of trivalent 

f-block elements from aqueous nitric acid feed (3M HNO3). The synthesized resin MRBB (N, N- Dibutyl diglycolamide grafted over 

n-butyl aminated Merrifield resin) was characterized with grafting percentage of >66%. Am3+ an actinide was used as a radiotracer 

for preliminary studies to check the efficacy of synthesized polymeric adsorbent. After optimization of synthesis parameters, Eu3+ 

salt, a surrogate lanthanide ion was used in an aqueous feed to optimize the operating parameters of adsorption. The distribution 

coefficients KD for different conditions were in the range of thousands but for a similar kind of work with malonamides the range 

was just in hundreds as reported in the available literature. The adsorption kinetics predominantly follows pseudo-second order 

reaction with k2 = 6.3 x 10-5 g/(mg-min). The work is an important contribution in sustainable organic, polymer and nuclear 

chemistry. 
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1. Introduction 

 

With the increasing demand for sustainable and greener sources of energy due to the rise in population and pollution 

levels of the world, nuclear energy is gaining its importance as it is relatively less polluting, having a lesser carbon 

footprint, high throughput, and available throughout the year. The major hindrance to the expansion of the nuclear 

industry is its high initial investment and post-operation costs for waste management. Developing countries are focusing 

on nuclear fuel reprocessing technologies and how to make these technologies financially feasible without 

compromising efficiencies of processes. Technologies like PUREX (Plutonium-Uranium reduction extraction), TRUEX 

(Trans-Uranium Extraction), DIAMEX (Diamide Extraction), UREX (Uranium Extraction), etc are solvent extraction-

based techniques and require huge volumes of respective extractants/ligands and organic solvents. This not only adds up 

to the cost of separation operation but also generates a huge amount of secondary waste which has to be dealt with the 

utmost care by following the vitrification process and then burying the waste in abandoned coal mines[1-9]. 

 

Solvent extraction of metal ions from an aqueous waste stream is the most common technique used in the nuclear 

industry. In solvent extraction, ligands are designed in such a way that they selectively extract particular metal ions over 

others. The moieties present in these ligands determine the type of ligand viz Phosphorus based[10-13], Nitrogen-

based[14-24] , Sulphur based[25-26], etc. Each class of ligand has its pros and cons. Considering post-operation waste 

management of these used ligands, Nitrogen (N)- based ligands are being preferred over others. Nitrogen-based ligands 

mainly malonamides and diglycolamides have not only better selectivity and partitioning abilities due to their basic 

character but are also lesser corrosive and leave no solid residue on incineration as it follows CHON principle of green 

chemistry. A lot of research is being done on N-based ligands wherein researchers have highlighted the advantages of 

these ligands over its other competitors[14], [16], [24], [27-29]. Out of all N-based ligands, TODGA (N,N,N’,N’- 

Tetraoctyl Diglycolamide) is a promising extractant for nuclear fuel reprocessing. The alkyl chain lengths of DGA 

moieties can be altered as per need but even such a versatile ligand has its limitations like adduct and micelle formation 

in high acidity. Researchers have tried to counter this disadvantage by using ligand facilitated adsorption[30-34], 

grafted polymeric resins or sorbents[35-38], using dendritic polymers[39-40], blending of extractants[41-42] or altering 

the structure of DGA (Diglycolamide) functionalties[4], [24], [29], [43-46]. 
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Even though inert adsorbents with loaded extractants have shown better KD values than solvent extraction as proved by 

many researchers[47-49] they face the problem of leaching and can’t be used multiple times. It is always better to 

covalently graft the functional groups to maintain consistency and reusability[50-53]. One of the basic difference 

between solvent extraction and adsorption is that in solvent extraction solute from aqueous phase first enters the organic 

phase and then interacts with the ligand. On the other hand, in adsorption, there is no intermediate step and solute from 

aqueous phase directly interacts with active site. Thus in solvent extraction,it is better to have a hydrophobic 

environment around the ligand but vice versa in case of adsorption. Thus, shorter chain length around DGA group will 

help in better uptake than longer chain lengths as used for solvent extraction[49], this is explained in later sections.  

In the present work, we first fixated the suitable carbon chain length associated with DGA moiety. Butyl, Hexyl and 

Octyl derivatives of amine were tried as they are stable compounds compared to ammonia and other smaller amines and 

diamines. We grafted DGA groups with suitable associated chain lengths onto Merrifield resin, characterized it, and 

then used it as an adsorbent for adsorption of Eu(III) from aqueous acidic feed and studied various parameters affecting 

the distribution coefficient. 

2. Experimental Work 

2.1. Materials and Methods 

For synthesizing dialkyl diglycolamide grafted Merrifield resin, Merrifield resin (5.5  mmol Cl/g of resin, Loba 

Chemicals),  diglycolic acid (99% pure, Sigma Aldrich), acetic anhydride (99% pure, Thomas Baker),  sulphuric acid 

(98% conc.,  Loba Chemicals), n-butylamine (99% pure, Thomas Baker), n-hexylamine (99% pure, Thomas Baker), n-

octylamine (99% pure, Thomas Baker), dibutylamine (99% pure, Thomas Baker), dihexylamine (99% pure, Thomas 

Baker), dioctylamine (99% pure, Sigma Aldrich), pyridine (98% pure, Thomas Baker), para-nitrophenol (99% pure, 

SDFCL), dicyclohexylcarbodiimide (98% pure, SDFCL), 4-dimethylaminopyridine (99% pure, Sigma Aldrich),  and 

triethylamine (99% pure, SDFCL) were used. The various solvents used were, dichloromethane (99% pure, Thomas 

Baker), methanol (98% pure, Thomas Baker), toluene (98% pure, Thomas Baker) and 1,4-dioxane (98% pure, Thomas 

Baker). 

For intermediate process ivolving acidic and alkaline treatment, Hydrochloric acid (35.4% (v/v), Loba Chemicals) and 

Sodium Carbonate (solid powder, SDFCL) were used.  For removing traces of water, magnesium sulphate (solid 

powder, Loba Chemicals) was used.  For uptake study of trivalent lanthanide, Europium (III) nitrate pentahydrate 

(Sigma Aldrich) and nitric acid (70% conc., Thomas Baker) were used, Finally, for characterization by NMR, d-CDCl3 

(99.9% pure, Sigma Aldrich) and DMSO-d6 (99.9% pure, Sigma Aldrich) were used as solvents.  

For analytical analysis, FTIR was carried out with SHIMADZU IRAffinity-1; Solid NMR was carried out with Bruker 

AV III 500 MHz (SAIF IIT Madras); Initial and final gamma radiation counts were measured on well type NaI(TI) 

scintillation counter interphased with multichannel analyzer (Radiochemistry division BARC), XPS analysis was 

carried out using Kratos Analytical Supra (ESCA lab, Dept. of Physics, IIT Bombay) and ICP-AES was carried out with 

SPECTRO Analytical Instruments GmbH: ARCOS Simultaneous ICP Spectrometer (SAIF IIT Bombay). 

2.2. Grafting of Merrifield resin 

DGA groups are grafted over Merrifield resin by following 5 step reaction schemes. as shown in Fig.1. 

1) 5.5 mmol of Cl per gram of Merrifield resin, 5% DVB, porous, 16-50 mesh size was used. It was reacted with an 

excess amount of n-butylamine in dioxane at a very mild temperature. The Cl groups get replaced with butylamine and 

HCl generated forms salt with excess amine thus makes the reaction move in a forward direction[54]. The final product 

was vacuum filtered and washed with water, methanol and 10% triethylamine in Dichloromethane and then kept for 

drying to remove unreacted amine and its respective chloride salt.  

2) Diglycolic acid, along with acetic anhydride and a few drops of sulphuric acid, was used to produce diglycolic 

anhydride (DGAn).  The reaction temperature was kept at around 140 ⁰C.  At the end of the reaction, the acetic acid was 

separated by vacuum distillation to get a solid product[28].  The yield was around 93%.   

3) The Diglycolic anhydride obtained was reacted with a stoichiometric amount of dibutylamine in 1,4-dioxane; 

pyridine was added as a basic medium for the reaction.  The reaction takes place at 130 ⁰C for four hours.  After 

distilling out dioxane, the product was washed with 20% HCl (v/v) to remove the traces of pyridine.  The yield of 

DBDGA obtained was around 90%. 



 
 

4) The DBDGA was activated with para-nitrophenol, as it is a better leaving group.  DBDGA was dissolved in 

dichloromethane along with DCC (N,N’-dicyclohexyl carbodiimide) and para-nitrophenol in the presence of 4-

dimethylaminopyridine (DMAP)[55].The yield was more than 99%. 

5) Aminated Merrifield resin was reacted with p-nitrophenol activated DBDGA in refluxing toluene with traces of 

triethylamine. The impeller of the reactor breaks the swelled polymer, so one has to keep the proper flow pattern to 

maintain the size of the resin. The solid product was vacuum filtered and kept in the oven for drying after washing it 

with toluene, water and methanol thoroughly to remove p-nitrophenol[56]. The maximum percentage grafting obtained 

was 66.13%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Reaction scheme to form MRBB 

 

2.3. Uptake study with MRBB 

 

The synthesized MRBB was contacted with an acidic aqueous solution of Eu(NO3)3.5H2O salt for 3 hours at 1000 rpm. 

The volume of feed solution was kept 1 litre for each data point to avoid errors caused due to loss during sampling. Each 

sample was prepared by following the standard protocol of sample preparation for ICP-AES. Each sample was diluted 

50 times with De-ionized water and then analyzed for Eu concentration using ICP-AES. Each experiment was carried 

out in triplets to minimize experimental errors. For preliminary studies, MRBB was spiked with 3 M HNO3 aliquot of 
241Am radiotracer for 3 hours at 25 oC in thermostated water bath. After contact, each sample was centrifuged and then 

tested for gamma counts per minute on well type NaI(TI) scintillation counter interphased with multichannel analyzer.   

 

3. Results and Discussions 

The present work is broadly divided into two major sub-parts viz Synthesis and Characterization of MRBB; Uptake 

study with synthesized MRBB. 

3.1. Characterization of MRBB     

The use of the adsorbent is based upon the presence of diglycolamidic functional group on its surface, which entrap the 

metal ions. To verify the presence of these functional groups conclusively, FTIR (Fourier Transform Infrared 

Spectroscopy) analysis was carried out to study various functional groups present in the synthesized adsorbent.  Major 
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peaks are 2927 cm-1 (C-H stretching), 1738 cm-1 (Ester, C=O stretching), 1645.79 cm-1 ( associated tertiary amide, 

>CO-N<), 1454.7 cm-1 (alkane, C-H bending), 1217.2 cm-1 (ester, C-O stretching), 1110 cm-1 (ether, C-O-C stretching), 

817 cm-1 (1,4-disubstituted benzene, C-H bending). Absence of 670 cm-1 corresponds to –CH2-Cl confirming that 

significant grafting has been done (refer Fig. 2.). Solid NMR shows that DBDGA is covalently grafted on Merrifield and 

is not just a physical mixture of Merrifield and DBDGA. Important peaks observed were 168.82 ppm (tertiary amide), 

157.69 to 104.99 ppm (aromatic), 88.69 to 65.82 ppm (C-O bond), 47.62 to 40.37 ppm (C-N), 31.62 to 14.71 ppm 

(alkyl groups) (refer Fig. 3.). Inspite of the high percentage grafting the distribution coefficient of Am3+ radiotracer on 

MRBB was varying with the size of resin and was found to be higher for resins of large surface area (KD =5500 ml/g for 

200-400 mesh size; KD =1150 ml/g for 16-50 mesh size under same conditions). Thus, it was inferred that DGA groups 

within the hydrophobic Merrifield matrix were unutilized and only groups on the surface were contributing for uptake 

of metal ions. The percentage of N atoms or DGA groups on the surface was determined using XPS (X-ray 

Photoluminescence) analysis. The value of nitrogen content on surface was inversely proportional to size of resin. Fig. 

3. exhibits XPS plot of MRBB which gives atomic and mass concentrations of N (1s) as 9.9 and 10.63% respectively, 

which is in coherence with results we got from quantitative CHNS analysis. 

 

 

 

 

 

 

 

Fig. 2.  FTIR plot of MRBB 

.  

Fig. 3. 13C NMR plot of MRBB 

 
  

Fig. 4. XPS plot of MRBB 

3.2. Uptake studies with Eu3+ 

For each parameter, the distribution coefficient, KD values were determined by measuring initial and final 

concentrations of feed sample and putting those values in equation given below (refer Fig. 5. and Table 1.):- 
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Where, KD= Distribution Coefficient 

             Ci = Initial Concentration of Eu3+ in aqueous feed, in ppm 

        Cf = Final Concentration of Eu3+ in aqueous feed, in ppm 

        V = Volume of feed, in ml 

        W = Weight of resin, in g 

3.2.1. Concentration Vs Time 

A 250 ppm of Eu3+ in 3 M HNO3 feed solution with 100 mg of MRBB was used for finding equilibrium time at 25 oC. 

Samples were taken in between 0 to 120 minutes. The steady state was achieved in first 30 minutes as shown in Fig. 

5(a). 

3.2.2. KD Vs [HNO3] 

Feed solution of 250 ppm Eu3+ in varying concentrations of HNO3 was contacted for 3 hours with 100mg of MRBB at 

25 oC for each separate data point. Concentrations of HNO3 for feed solution used were 1 M, 3 M, 5 M, 7 M and 9 M. 

KD values were calculated using the equation 1 and plotted against [HNO3] as shown in Fig. 5(b). The trend shows that 

at high concentrations of feed solution desorption takes place. The reason is that the basic DGA groups start getting 

preoccupied with a high concentration of protons in feed at higher acidity thus inhibits the adsorption of metal ions on 

its surface[14]. This disadvantage can be used for reactivation of used MRBB thus makes MRBB reusable for multiple 

times. The plot is exhibited in Fig. 5(b). 

3.2.3. KD Vs [MRBB] 

Feed solution of 250 ppm Eu3+ in 3 M HNO3 was contacted for 3 hours with varying amounts of MRBB at 25 oC for 

each separate data point. The amount of MRBB used was 100, 200, 300, 400 and 500 mg per litre of feed. KD values 

were plotted against [MRBB] as shown in Fig. 5(c). No significant change was observed in KD values (as amount of 

adsorbed species is increasing but so is the amount of adsorbent, so both negates each other) thus signifying that there 

were no significant hydrodynamic interactions during uptake process. The plot is exhibited in Fig. 5(c).  

3.2.4. KD Vs Temperature 

Feed solution of 250 ppm Eu3+ in 3 M HNO3 was contacted for 3 hours with 100mg of MRBB at 25 oC, 30 oC, 40 oC 

and 50 oC for each separate data point. KD values were calculated using the equation 1 and plotted against [MRBB] as 

shown in Fig. 5(d). A typical chemisorptions plot was observed in which KD value initially increased with temperature 

as it facilitates to surpass the activation energy barrier but on further increment in temperature it drops drastically as 

coordination bonds between DGA groups and Eu3+ starts breaking at higher temperatures[57-58]. The plot and values 

are exhibited in Fig. 5(d).  

  Table 1. KD values with corresponding parameters 

[HNO3] 

in M 

KD in 

ml/g 

[MRBB] 

in mg 

KD in 

ml/g 

Temperature 

in oC 

KD in 

ml/g 

    

1 1520 100 2315 30 2315     

3 2315 200 2184 40 3158     

5 2755 300 2375 50 1521     

7 504 400 2345 60 504     

9 81 500 2425 - -     

 

 

 



 
 

 
 (a)       (b) 

 

 (c)      (d) 

 Fig. 5. Varying KD values with varying conditions 

  

3.3. Adsorption Kinetics  

Data from Concentration Vs Time was used to find the order of adsorption (reaction). Data points only in between 5 to 

30 minutes were used to determine the kinetics as they exhibit a significant change in concentration of Eu3+. Curve 

fitting of data for Pseudo first order and Pseudo second-order were tried as shown in Fig. 6. followed by calculations of 

respective rate constants. By comparing regression coefficients we can conclude that the adsorption kinetics 

predominantly follows pseudo-second order reaction with k2 = 6.3 x 10-5 g/(mg-min). 

3.3.1. Pseudo First Order Reaction 

The plot and values are exhibited in Fig. 6(a). and Table 2. respectively 

Calculations 

The general equation for Pseudo first order reaction is given below 

ln⁡(qE) = lnq − k1. t          (2) 

Equilibrium Concentration on adsorbent, qE = 470 mg/L 

From plot between ln(qE-q) Vs t and equation, we get k1 = 0.0756 min-1 

3.3.2. Pseudo Second Order Reaction 

The plot and values are exhibited in Fig. 6(b). and Table 2. respectively 

Calculations 

The general equation for pseudo second order equation is given below 

(1/𝑞) = (1/𝑞𝐸) + (1/𝑘2𝑞𝐸
2 )(1/𝑡)                                                 (3) 

Equilibrium Concentration on adsorbent, qE = 470  mg/L 

From curve between 1/q Vs 1/t and equation, we get k2 = 6.3 x 10-5  g/(mg-min) 
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Table 2. Adsorption Kinetics calculations 

Pseudo First order calculations (ln(qE-q) Vs time) 

Time, t (in min) 
Concentration, C (in 

ppm) 

qE-q 

(qE = 470) 
ln(qE-q) 

0 250 470 6.152733 

5 243 400 5.991465 

10 236 330 5.799093 

20 221 180 5.192957 

30 209 60 4.094345 

Pseudo Second order calculations (1/q Vs 1/t) 

Time, t (in min) 
Concentration, C (in 

ppm) 
1/q 1/t 

5 243 0.014286 0.20 

10 236 0.007143 0.10 

20 221 0.003448 0.05 

30 209 0.002439 0.03 

 

 

 

  (a)       (b) 

   Fig. 6. (a) Plot of Pseudo First Order; (b) Plot of Pseudo Second Order  

3.4. Adsorption Isotherm 

Data from KD Vs [MRBB] was used to determine the isotherm followed by the system. Curve fitting of data for 

Frendulich and Langmuir were tried as shown in Fig. 7, followed by calculations of respective constants in Table 3. 

Amongst the isotherms, Frendulich fits with n=1.13507 and k=4.09261 and Langmuir constants a = 9.6 x 10-4 and b 

=2.78474. Regression coefficients exhibit that the adsorption process follows characteristics of both physisorption and 

chemisorption but from KD Vs Temperature we have already concluded that the adsorption process is following 

chemisorptions, thus we can say the system follows chemisorption predominantly than physisorption.  
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Table 3. Adsorption Isotherm calculations 

Frendulich Isotherm calculations (log(x/m) Vs log C ) 

Quantity of 

resin, m (in g) 

Amount of 

adsorbate, x (in 

mg/L) 

Final 

Concentration of 

feed, C (in mg/L) 

x/m log(x/m) logC 

0.1 47 203 470 2.67 2.31 

0.2 76 174 380 2.58 2.24 

0.3 104 146 346.6 2.54 2.16 

0.4 121 129 302.5 2.48 2.11 

0.5 137 113 274 2.44 2.05 

Langmuir Isotherm calculations (M/Y Vs 1/C) 

Quantity of 

resin (in mg) 

Amount of 

adsorbate, Y 

(in mg/L) 

Final 

Concentration of 

feed, C (in mg/L) 

Adsorbent 

concentration, 

M (in mg/L) 

M/Y 1/C 

100 47 203 100 2.128 0.0049 

200 76 174 200 2.632 0.0057 

300 104 146 300 2.885 0.0068 

400 121 129 400 3.306 0.0078 

500 137 113 500 3.650 0.0089 

 

 

 

 

 

 

 

   (a)       (b) 

    Fig. 7(a). Frendulich Isotherm; 7(b) Langmuir Isotherm 

Conclusions  

The work deals with grafting of diglycolamide functionality over Merrifield resin and then utilizing the same for 

adsorption of trivalent f-block elements.  

1) The work provides the grafting mechanism which is in tandem with green chemistry principles thus it not only 

provides a better polymeric adsorbent but also takes care of the waste generated durng synthesis of adsorbent 

making it a commercially viable option. 

2) For better uptake, a shorter chain length associated with diglycolamide moiety should be preferred and the 

uptake mechanism is surface area dependent as microenvironments within the polymer matrix is too 

hydrophobic thus reduces the availability of metal ions to active sites. 

3) The maximum KD value viz 3158  ml/g was obtained when 1 litre of aqueous feed Eu3+ solution in 3 M HNO3 

was contacted with 100 mg of MRBB at 40 oC. The value is significantly higher when compared with other 

reported covalently grafted solid polymeric resins. 
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