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Abstract 

 
India heavily relies on imported foreign crude oil, prompting the need for effective 

solutions to reduce this dependency. One such solution is the blending of Biodiesel, 

Palm oil, and Ethanol with original diesel. The crucial concern lies in determining the 

optimal blending ratio that maximizes Engine Efficiency while maintaining reasonable 

levels of Oil Consumption and NOx emission. To address this, experimental data are 

collected from the paper [1] which systematically blends biodiesel. Experimental data 

involved three input parameters [Load, Palm Biodiesel, Ethanol] and three output 

parameters [Motor Brake Thermal Efficiency (BTE), Brake Specific Fuel Consumption 

(BSFC), and Nitrogen Oxides (NOx)], with 40 different runs. The prediction was 

accomplished using 26 Machine Learning Models, including Gaussian Process 

Regression, Support Vector regression, ANN, Tree and Linear Regression and others. 

Among the 26 models considered in the analysis, three models emerged as the top 

performers. The Stepwise Linear Regression Model [SLRM] yielded the highest Brake 

Thermal Efficiency (BTE), the Fine Tree Regression Model [FTRM] achieved the 

lowest Brake Specific Energy Consumption [BSFC], and the Matern 5/2 Gaussian 

Process Regression Model [MGPRM] demonstrated the lowest Nitrogen Oxide (NOx) 

emission. These models displayed a range of Root Mean Square Error (RMSE) and R-

squared(validation) values: 0.02077–0.02333 and 0.99 for SLRM, 0.03789–0.03907 

and 0.98 for FTRM & 0.02184–0.02296 and 0.99 for MGPRM. Moving forward, a 

multi-objective optimization approach has been undertaken to simultaneously maximize 

BTE while minimizing both BSFC and NOx emissions. To accomplish this, a Multi 

Objective Genetic Algorithm [MOGA] is employed to identify the Pareto Optimal 

Solution. The optimization process [MOGA] resulted in a series of 18 Pareto Optimal 

Solutions. These solutions provide insights on the appropriate blend ratios of Load, 

Palm Biodiesel and Ethanol in order to maximize Engine Thermal Efficiency while 

minimizing Fuel Consumption and NOx emissions. 
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1. Introduction 

 

The growing demand for fossil fuels and their 

application in diesel engines, especially in the 

industrial and automotive sectors, has increased 

significantly. However, this excessive use of 

conventional fuels has raised concerns over fuel 

depletion and the environmentally harmful 

emissions associated with diesel engines, 

motivating the exploration of alternative fuels 

over the past few decades [1,2]. The ongoing 

global industrial revolution has led to stricter 

regulations governing the use of diesel engines, 

largely driven by concerns about environmental 

pollution. As a response, alternative fuels have 

gained prominence as a means to mitigate 

harmful emissions and address global warming 

[3–5]. Over approximately a century, 

alternative fuels have been actively pursued as 

substitutes for traditional fossil diesel. Among 

these alternatives, biofuels have shown 

promise, with biodiesel emerging as a leading 

contender due to its similar properties to 

conventional diesel fuel [7–9]. Biodiesel is 

sulphur-free, less toxic, and more 

environmentally friendly, and it can be 

produced from a variety of readily available 

sources. Nevertheless, biodiesel presents some 

drawbacks, such as higher viscosity, greater 

density, and poor cold flow properties, which 

can hinder its effective use in diesel engines 

[10–12]. In such situations, alcohol-based 

additives are frequently utilized to modify the 

characteristics of biodiesel [13]. Notably, 

among these additives, ethanol, methanol, n-

butanol, and diethyl ether are well-known and 

widely employed [14–18]. 

Researchers try to conduct experiments with 

diesel engines to find out at what proportions 

these additives can be blended so that engine 

performance, fuel consumptions and NOx 

emissions from diesel engines can be 

optimized. A diesel engine's performance is 

usually measured by three Metrics namely 

Brake Thermal Efficiency (BTE), Brake 

Specific Fuel Consumption (BSFC) and NOx 

(Nitrogen Oxides) emissions.  Brake Thermal 

Efficiency (BTE) is a measure of how 

efficiently a diesel engine converts the heat 

energy from fuel into useful mechanical work. 

It is defined as the ratio of the brake power 

output to the energy input from the fuel. BTE is 

typically expressed as a percentage and can be 

calculated using the following formula: BTE 

(%) = (Brake Power Output / Fuel Energy 

Input) × 100.  

On the other hand, Brake Specific Fuel 

Consumption (BSFC) is a measure of the fuel 

efficiency of a diesel engine. It quantifies the 

amount of fuel (typically expressed in mass or 

volume) required to produce one unit of brake 

power (usually one kilowatt or one horsepower) 

over a specific period of time. Lower BSFC 

values indicate better fuel efficiency. BSFC is 

defined using the following formula:  

BSFC (g/kWh) = (Fuel Consumption in grams) 

/ (Brake Power Output in kilowatts) 

A lower BSFC value indicates that the engine is 

using less fuel to produce a given amount of 

power, which is a desirable characteristic for an 

efficient diesel engine. Engineers and 

manufacturers work to optimize engine design 

and operating conditions to minimize BSFC 

and improve fuel economy. NOx (Nitrogen 

Oxides) emissions from a diesel engine are a 

type of air pollution that consists of various 

nitrogen oxide compounds, primarily nitrogen 

dioxide (NO2) and nitric oxide (NO). These 

emissions are a result of the high-temperature 

combustion process in the diesel engine, which 

causes nitrogen and oxygen in the air to react 

and form NOx compounds. 

NOx emissions are typically quantified and 

regulated in terms of concentration or mass per 

unit volume of exhaust gases. Common units 

for expressing NOx emissions include parts per 

million (ppm), grams per kilogram (g/kg), or 

grams per brake horsepower-hour (g/bhp·hr). 

The specific method and units used may vary 

depending on regional regulations and 

standards. 

 

NOx emissions can be measured using various 

techniques, including exhaust gas analysers or 

emissions testing equipment. These 

measurements are usually taken at the exhaust 
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outlet of the engine or vehicle to determine the 

concentration of NOx in the exhaust gases. 

These values can be used to assess compliance 

with emissions standards and regulations. 

Reducing NOx emissions is a significant 

concern for diesel engine manufacturers and 

vehicle operators due to their adverse 

environmental and health effects.  

 

The main problems researchers try to solve is to 

find the optimum blend ratio of biodiesel and 

various additives so that the above three 

conflicting objectives can be optimized. 

Traditional methods of conducting engine 

experiments are now considered time-

consuming and costly. As a result, new 

techniques utilizing computational analysis 

have been introduced to facilitate faster and 

more cost-effective experimentation [19–21]. 

Researchers, such as Krishnamoorthi et al. [22], 

have conducted experiments to optimize engine 

performance by varying injection pressure (IP), 

injection timing (IT), and compression ratio in 

a diesel engine, ultimately using Response 

Surface Methodology (RSM) to determine the 

optimal engine input parameters. They found a 

compression ratio of 18:1, a fuel injection 

pressure (FIP) of 250 bar, and an injection 

timing of 21 degrees before top dead center 

(bTDC) to be the best settings. Through the 

application of different design of experiments 

(DoE) and various RSM models, predictive 

models for engine responses, such as Brake 

Thermal Efficiency (BTE), Brake Specific 

Energy Consumption (BSFC), nitrogen oxides 

(NOx), hydrocarbons (HC), carbon monoxide 

(CO), and smoke opacity, have been developed, 

with coefficient of determination (R2) values 

for these parameters ranging between 0.9256 

and 0.9991 [23–25]. 

Recent advances in computational analysis of 

diesel engine performance and emission 

parameters have introduced Artificial Neural 

Networks (ANN) as a promising alternative to 

RSM. ANN models are known for their ability 

to provide accurate predictions and strong 

correlations with experimental results. 

Shivakumar et al. [26] applied separate ANN 

models to predict engine responses within 8% 

mean error values (MRE). Taghavifar et al. [27] 

utilized ANN predictions with a feed-forward 

backpropagation (BP) learning algorithm and 

Levenberge-Marquardt transfer function for 

Computational Fluid Dynamics (CFD) 

simulated engine outputs, achieving high R2 

values of 0.9951, 0.9976, and 0.9995 for NOx, 

CO2, and soot emissions, respectively. Rao et 

al. [28] investigated ANN prediction for nine 

different engine outputs with low error 

percentages (0.01–0.03) and high R2 values 

(0.980–0.999). Javed et al. [29] trained an ANN 

model for predicting engine performance and 

emissions, achieving an overall R value of 

0.99360, Mean Squared Error (MSE) of 0.0011, 

and Mean Absolute Percentage Error (MAPE) 

of 4.863001%. Uslu et al. [30] accurately 

predicted engine responses using ANN models, 

observing R2 and mean relative error (MRE) 

values ranging from 0.964 to 0.9878 and 0.51–

4.8%, respectively. Furthermore, several 

comparative studies have been conducted to 

assess the accuracy of prediction between RSM 

and ANN models [31,32]. In most cases, ANN 

models have outperformed RSM models due to 

their capacity to handle highly nonlinear 

behaviour during training [33–37]. Uslu et al. 

[38] developed a prediction model, obtaining an 

R2 value of 0.9 for RSM and 0.85–0.95 for 

ANN. 

Despite the extensive literature focusing on 

prediction and optimization using RSM and 

ANN, and their combined RSM-ANN models, 

there remains a gap in the investigation of a 

comparative study between more advanced 

machine learning models in this domain. An 

effort has been made in the present study to 

apply various advanced machine learning 

models to predict engine performance 

parameters (BTE, BSFC and NOx) from engine 

input parameters such as Load %, Palm 

Biodiesel % and ethanol%. In the present study 

2 advanced machine learning models have been 

applied and the best model is finally selected. 

After a reliable machine learning model is built, 
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the second objective is to optimize the blend 

ratio of Palm Biodiesel % and ethanol% so that 

a reasonable balance can be found in conflicting 

3 objectives like BTE, BSFC and NOx. 

The study's goals are bifurcated into two 

primary components. Firstly, the 26 advanced 

machine learning models are harnessed for 

predicting BTE, BSFC, and NOx emissions. 

Furthermore, diverse error types and correlation 

analyses have been executed to gauge and 

contrast the models' precision. On the other 

hand, leveraging the anticipated responses from 

the model, a multiobjective genetic algorithm 

system is effectively employed to determine the 

optimal engine input parameters and output 

responses. 

 

2. Materials and Methodology 

2.1. Experimental Setup: 

In this study experimental data from reference 

[39] is taken. The reference [39] experimental 

investigation was carried out on a Kirloskar 

(TV1) type direct-injected diesel engine with a 

power rating of 3.5 kW. This engine is a single-

cylinder, four-stroke, water-cooled unit  

with a variable compression ratio. The setup 

includes an eddy current dynamometer for 

measuring engine load, a crank angle sensor to 

monitor engine speed at every 1° crank angle 

rotation, K-type thermocouples for measuring 

various temperatures, and a piezoelectric 

transducer to record in-cylinder pressure. 

Additionally, a gas analyser was connected to 

the exhaust pipe to measure exhaust emissions, 

including NOx, CO, UHC (unburned 

hydrocarbons), CO2, and O2. Data acquisition 

and control were facilitated by a computerized 

system interfaced with specialized software. 

 

 

2.2. Test Methodology: 

 

The experimental procedure used in [39] for 

assessing engine performance and emissions 

involved testing the engine under varying loads, 

ranging from 20% to 100% in 20% increments, 

while maintaining a constant speed of 1500 

rpm. Fuel consumption was measured using a 

fuel burette, and environmental conditions were 

documented. Different blends of diesel, palm 

biodiesel, and anhydrous ethanol were used in 

the experiments. 40 experimental runs were 

carried out at different engine loads, Palm 

Biodiesel % and ethanol% and 3 metrics of 

engine performance namely BTE, BSFC and 

NOx were measured in each run. The data are 

shown in table 1. 

 

 
Table 1: Experimental data used for model building [39] 

Test 

Run 

Engine 

Load 

(%) 

    A 

Palm 

biodiesel (%) 

        B 

Ethanol 

(%) 

     C 

BTE BSFC NOx 

  1 40 10 10 0.34 0.51 0.40 

  2 60 10 5 0.55 0.33 0.60 

  3 100 15 10 0.81 0.12 0.82 

  4 40 15 5 0.34 0.55 0.40 

  5 60 10 10 0.50 0.34 0.64 

  6 80 15 10 0.63 0.24 0.74 

  7 80 15 5 0.69 0.22 0.74 

  8 40 20 10 0.30 0.55 0.37 

  9 20 5 5 0.18 0.81 0.12 

10 60 15 10 0.48 0.36 0.60 

11 100 10 5 0.87 0.12 0.82 
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Test 

Run 

Engine 

Load 

(%) 

    A 

Palm 

biodiesel (%) 

        B 

Ethanol 

(%) 

     C 

BTE BSFC NOx 

  5 60 10 10 0.50 0.34 0.64 

  6 80 15 10 0.63 0.24 0.74 

  7 80 15 5 0.69 0.22 0.74 

  8 40 20 10 0.30 0.55 0.37 

  9 20 5 5 0.18 0.81 0.12 

10 60 15 10 0.48 0.36 0.60 

11 100 10 5 0.87 0.12 0.82 

12 100 20 10 0.76 0.15 0.78 

13 20 10 5 0.17 0.81 0.11 

14 20 15 10 0.17 0.77 0.13 

15 20 5 10 0.20 0.72 0.11 

16 100 20 5 0.90 0.10 0.83 

17 80 20 10 0.58 0.27 0.73 

18 40 5 5 0.39 0.49 0.37 

19 100 5 10 0.86 0.10 0.90 

20 60 20 10 0.45 0.38 0.59 

21 20 20 5 0.17 0.81 0.10 

22 80 5 10 0.69 0.20 0.83 

23 80 20 5 0.71 0.21 0.73 

24 60 5 5 0.56 0.33 0.56 

25 60 20 5 0.53 0.34 0.58 

26 80 10 10 0.64 0.23 0.80 

27 40 20 5 0.40 0.48 0.38 

28 100 15 5 0.87 0.12 0.83 

29 100 10 10 0.85 0.11 0.86 

30 40 10 5 0.39 0.49 0.39 

31 20 20 10 0.10 0.90 0.11 

32 40 15 10 0.36 0.49 0.35 

33 40 5 10 0.36 0.49 0.45 

34 80 10 5 0.73 0.20 0.76 

35 80 5 5 0.75 0.19 0.72 

36 20 15 5 0.16 0.84 0.12 

37 100 5 5 0.90 0.11 0.84 

38 60 15 5 0.51 0.36 0.60 

39 20 10 10 0.15 0.81 0.15 
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Test 

Run 

Engine 

Load 

(%) 

    A 

Palm 

biodiesel (%) 

        B 

Ethanol 

(%) 

     C 

BTE BSFC NOx 

36 20 15 5 0.16 0.84 0.12 

37 100 5 5 0.90 0.11 0.84 

38 60 15 5 0.51 0.36 0.60 

39 20 10 10 0.15 0.81 0.15 

40 60 5 10 0.53 0.32 0.68 

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

36 20 15 5 0.16 0.84 0.12 

37 100 5 5 0.90 0.11 0.84 

38 60 15 5 0.51 0.36 0.60 

39 20 10 10 0.15 0.81 0.15 
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2.3. Development Of Machine Learning 

Model: 

 

Experimental data shown in table 1 is used to 

develop various machine learning models. First 

3 parameters in table-1 namely engine load, 

Palm Biodiesel % and ethanol%are taken as the 

input and next 3 engine performance 

parameters namely BTE, BSFC and NOx are 

taken as output of machine learning models. At 

a time one output was taken and 3 different 

models were built. 

In the past decade, a multitude of machine 

learning models and algorithms have emerged 

in the literature. The goal is to assess how 

quickly and accurately these machine learning 

algorithms can comprehend the intricate 

nonlinear relationships between input and 

output data. Each algorithm has its own 

strengths and weaknesses. Given the absence of 

prior knowledge about which model suits the 

data best, this study explores 26 advanced 

machine learning models. 

In this step, pre-processed data are inputted into 

diverse nonlinear advanced machine learning 

models such as decision trees, support vector 

regression, artificial neural regression, and 

Gaussian process regression. The objective is to 

evaluate and compare the predictive 

performance of each algorithm and their 

accuracy in predicting efficiency (BTE), Brake 

specific energy consumption (BSFC) and 

emissions (NOx). Initially, all algorithms were 

run with their default meta-parameter values in 

the MATLAB environment. To accurately 

assess the predictive capabilities of different 

machine learning models, the dataset was 

divided into training and validation sets using 

techniques like k-fold cross-validation. The 

model's performance was rigorously evaluated 

on the validation set to ensure its 

generalizability to unseen data. 

Performance metrics, including Coefficient of 

Determination (R2), Root Mean Square Error 

(RMSE), and Average Error Percent (AEP), 

were employed to quantify the accuracy and 

predictive power of the models. R2 represents 

the proportion of variance in the dependent 

variables (output parameters) from the 

independent variables (input parameters), while 

RMSE signifies the average deviation between 

predicted values and actual observations. These 

metrics offer valuable insights into the model's 

ability to accurately capture underlying patterns 

in the data.  

 

 

2.4. Modelling By Different Machine 

Learning Algorithms: 

 

For the sake of brevity, a concise introduction 

to the different machine learning models [40] 

utilized in this study is provided below.  

 

Linear Regression: 

● Simple Linear Regression: This model 

involves a linear regression approach 

with the inclusion of an intercept term 

and linear predictors. It aims to 

establish a linear relationship between 

the predictor variables and the target 

variable. 

● Interaction Linear Regression: In this 

linear regression variant, not only the 

intercept and linear predictors are 

considered, but also interaction terms 

among predictors are incorporated. 

This allows the model to capture more 

complex relationships between 

variables. 

● Robust Linear Regression: This type 

of linear regression is designed to be 

resistant to the influence of outliers in 

the data. It incorporates an intercept 

and linear predictors, but it employs 

techniques that downplay the impact of 

extreme data points. 

● Stepwise Linear Regression: This 

linear regression model employs a 

stepwise algorithm to determine which 

predictor variables should be included 

in the model. It automatically selects 

variables based on their contribution to 

the model's performance. 
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Decision Trees: 

● Fine Tree Regression: A regression 

tree with a fine structure, requiring a 

minimum leaf size of 4. This results in 

more detailed and potentially overfitted 

trees that can capture intricate patterns 

in the data. 

● Medium Tree Regression: This 

regression tree strikes a balance by 

requiring a minimum leaf size of 12. It 

aims to capture meaningful patterns 

while avoiding excessive complexity 

that might lead to overfitting. 

● Coarse Tree Regression: In this case, 

the regression tree is constrained by a 

minimum leaf size of 36. This promotes 

a simplified and general representation 

of the data, suitable for capturing 

broader trends. 

 

Support Vector Regression: 

● Linear SVM Regression: This support 

vector machine employs a linear kernel 

to capture a simple linear relationship 

in the data. It's relatively interpretable 

and is suitable for cases where the 

underlying relationship appears to be 

linear. 

● Quadratic SVM Regression: Here, a 

support vector machine is used with a 

quadratic kernel, enabling the model to 

capture quadratic relationships 

between variables. 

● Cubic SVM Regression: Similar to the 

quadratic variant, this model employs a 

cubic kernel to capture cubic 

relationships between variables. 

● Fine Gaussian SVM Regression: This 

SVM is tailored to capture finely-

detailed structures in the data using the 

Gaussian kernel. The kernel scale is 

adjusted based on the number of 

predictors. 

● Medium Gaussian SVM Regression: 

This version of the SVM captures less 

intricate patterns in the data compared 

to the fine Gaussian variant. It still uses 

the Gaussian kernel but with a kernel 

scale determined by the number of 

predictors. 

● Coarse Gaussian SVM Regression: 

This SVM identifies coarse structures 

in the data by using a Gaussian kernel 

with a larger kernel scale, adapted to 

the number of predictors. 

 

Gaussian Process Regression: 

● Rational Quadratic GPR: This 

Gaussian process regression model 

employs the rational quadratic kernel to 

capture complex relationships with 

varying scales and magnitudes. 

● Squared Exponential GPR: Using the 

squared exponential kernel, this model 

excels at capturing smooth 

relationships in the data, making it 

suitable for cases where the underlying 

relationship is continuous and smooth. 

● Matern 5/2 GPR: This Gaussian 

process regression model uses the 

Matern 5/2 kernel, which provides 

flexibility in capturing both smooth and 

abrupt changes in the data. 

● Exponential GPR: The exponential 

kernel is utilized here to capture 

relationships with a focus on rapidly 

decaying correlations. 

 

Kernel Approximation Regression: 

● SVM Kernel Regression: In this 

approach, a Gaussian kernel is applied 

to perform regression on nonlinear data 

with numerous observations. The 

kernel maps predictors to a higher-

dimensional space and fits a linear 

SVM model to the transformed 

predictors. 

● Least Square Kernel Regression: 

Similar to the SVM kernel regression, 

this model uses a Gaussian kernel to 

regress nonlinear data. However, 

instead of an SVM, it employs an 

ordinary least squares linear regression 

model on the transformed predictors. 
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Ensembles of Trees: 

● Boosted Trees: This ensemble method 

involves combining multiple 

regression trees using the LS Boost 

algorithm. It is efficient in terms of 

time and memory usage, but may 

require a larger number of ensemble 

members for optimal performance. 

● Bagged Trees: A bootstrap-aggregated 

ensemble of regression trees. While it 

often provides high accuracy, it can be 

resource-intensive in terms of 

computation and memory, particularly 

for large datasets. 

 

Artificial Neural Network: 

● Narrow ANN Regression: This 

regression neural network consists of a 

single fully connected layer with 10 

neurons, excluding the final fully 

connected layer used for regression 

prediction. 

● Medium ANN Regression: With a 

single fully connected layer containing 

25 neurons, this neural network aims to 

capture moderately complex 

relationships between predictors and 

the target. 

● Wide ANN Regression: In this neural 

network, a single fully connected layer 

with 100 neurons is used, suitable for 

capturing broader patterns and 

relationships in the data. 

● Bilayered ANN Regression: This 

regression neural network incorporates 

two fully connected layers (excluding 

the final regression layer), allowing for 

more intricate feature extraction and 

representation. 

● Trilayered ANN Regression: With 

three fully connected layers (excluding 

the final regression layer), this neural 

network aims to capture even more 

complex hierarchical patterns in the 

data. 

 

In this study, experimental data of table 1 were 

applied to all 26 models mentioned above, and 

a comparison table summarizing their 

performance was created. Most accurate model 

(highest R2 and lowest RMSE and AEP) was 

chosen for further investigation and 

optimization. 

 

 

2.5. Optimisation By Multi-Objective 

Genetic Algorithm: 

 

Once a reliable and accurate model is 

shortlisted, the next objective of this study is to 

find the optimum value of 3 input parameters 

namely engine load, Palm Biodiesel % and 

ethanol% so that BTE is maximized and BSFC 

and NOx are minimized simultaneously.  Since 

the 3 objectives are conflicting in nature, a 

multi-objective genetic algorithm is used here 

to strike a balance.  

Multi-Objective Genetic Algorithms (MOGAs) 

[41] have emerged as powerful tools in the 

realm of optimization and decision-making. 

Unlike traditional single-objective optimization 

methods, MOGAs are designed to handle 

complex problems with multiple conflicting 

objectives, offering a versatile approach to 

finding a set of diverse and optimal solutions, 

known as the Pareto front [42]. Leveraging 

principles from natural evolution, MOGAs 

employ genetic operators such as selection, 

crossover, and mutation to iteratively evolve a 

population of candidate solutions. These 

algorithms emphasize the exploration of the 

solution space, balancing the trade-offs 

between competing objectives. Through 

generations of evolution, MOGAs guide the 

search towards the Pareto-optimal front, 

enabling decision-makers to make informed 

choices based on a range of optimal solutions 

rather than a single compromise. (MOGA)s are 

based on the principle of natural evolution to 

find optimal methods for problems with 

multiple conflicting goals. The process begins 

with initializing a population of solutions to a 

problem. Each solution is represented as a set, 

often called chromosomes. These individuals 

are evaluated using objective functions that 
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measure how well they meet the various 

objectives of the problem.  The main elements 

of MOGA include choice, competition, and 

change. During the selection period, individuals 

in the population are selected as parents based 

on their fitness, determined by the performance. 

Individuals with more positive goals are more 

likely to be selected as parents. 

During crossover, two parents come together to 

produce offspring. By applying crossover 

operators to the parents' chromosomes, genetic 

information is exchanged to create new 

solutions. This mimics the process of genetic 

recombination in natural evolution. After the 

birth, some candidate solutions may develop 

mutations in which some of their chromosomes 

change. Mutations add genetic diversity to the 

population, preventing premature convergence 

to optimal solutions. When a new generation of 

offspring is created, a process called 

environmental selection is used. This step 

involves matching parents and offspring and 

selecting individuals for the next generation. 

Often, strategies such as elitism are used to 

ensure that the best available solutions are 

preserved for future generations. The algorithm 

repeats this step for several generations or until 

the fitness improvement is complete.  

 

 

 

The goal of MOGA [43] is to strike a balance 

between exploration and implementation, 

exploring the overall solution space while using 

the contract space to converge to Pareto 

optimality, that is, a set of solutions where no 

other solution can improve an objective without 

harming the others. 

The result of a multi-objective genetic 

algorithm is a set of variables that represent 

trade-offs between conflicting goals. By 

analysing the Pareto front, decision makers can 

gain a better understanding of the actual 

decision-making process by choosing the 

solutions that best suit their preferences and 

needs. 

 

 

3. Results And Discussions: 

 

3 different models are created for BTE, BSFC 

and NOx. For each model, 26 machine learning 

algorithms were used and out of them only the 

one that had the highest R-squared value was 

selected. Table 2, 3 and 4 summaries Model 

predictions performance of 26 different 

algorithms for BTE, BSFC and NOx 

respectively. The very high value of R2 and low 

value of RMSE signifies that all 3 models are 

very accurate. 

Table 2: BTE Model predictions performance of different algorithms 

Model 

Number 

Model Type RMSE 

(Validation) 

MSE 

(Validation) 

R-Squared 

(Validation) 

MAE 

(Validation) 

1 Simple Linear 

Regression 

0.03 0.00 0.99 0.02 

2 Interaction Linear 

Regression 

0.02 0.00 0.99 0.02 

3 Robust Linear 

Regression 

0.03 0.00 0.99 0.02 

4 Stepwise Linear 

Regression 

0.02 0.00 0.99 0.02 

5 Fine Tree 

Regression 

0.05 0.00 0.97 0.04 

6 Medium Tree 

Regression 

0.15 0.02 0.64 0.13 
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Model 

Number 

Model Type RMSE 

(Validation) 

MSE 

(Validation) 

R-Squared 

(Validation) 

MAE 

(Validation) 

7 Coarse Tree 

Regression 

0.25 0.06 0.00 0.21 

8 Linear SVM 0.03 0.00 0.99 0.02 

9 Quadratic SVM 0.02 0.00 0.99 0.02 

10 Cubic SVM 0.03 0.00 0.99 0.02 

11 Fine Gaussian 

SVM 

0.24 0.06 0.10 0.20 

12 Medium Gaussian 

SVM 

0.07 0.01 0.92 0.06 

13 Coarse Gaussian 

SVM 

0.05 0.00 0.96 0.04 

14 Boosted Ensemble 0.09 0.01 0.87 0.08 

15 Bagged Ensemble 0.09 0.01 0.88 0.07 

16 Rational Quadratic 

GPR 

0.02 0.00 0.99 0.02 

17 Squared 

Exponential GPR 

0.02 0.00 0.99 0.02 

18 Matern 5/2 GPR 0.04 0.00 0.98 0.03 

19 Exponential GPR 0.02 0.00 0.99 0.02 

20 Narrow ANN 0.04 0.00 0.98 0.03 

21 Medium ANN 0.03 0.00 0.99 0.02 

22 Wide ANN 0.03 0.00 0.98 0.02 

23 Bilayered ANN 0.05 0.00 0.96 0.04 

24 Trilayered ANN 0.04 0.00 0.98 0.03 

25 SVM Kernel 0.04 0.00 0.97 0.03 

26 Least Square 

Kernel 

0.07 0.01 0.92 0.06 

 

Table 3: BSFC Model predictions performance of different algorithms 

Model 

Number 

Model Type RMSE 

(Validation) 

MSE 

(Validation) 

R-Squared 

(Validation) 

MAE 

(Validation) 

1 Simple Linear 

Regression 

0.07 0.00 0.92 0.06 

2 Interaction Linear 

Regression 

0.08 0.01 0.91 0.06 

3 Robust Linear 

Regression 

0.07 0.00 0.92 0.06 

4 Stepwise Linear 

Regression 

0.07 0.00 0.92 0.06 

5 Fine Tree 

Regression 

0.03 0.00 0.98 0.03 
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 Model 

Number 

Model Type RMSE 

(Validation) 

MSE 

(Validation) 

R-Squared 

(Validation) 

MAE 

(Validation) 

6 Medium Tree 

Regression 

0.13 0.02 0.72 0.12 

7 Coarse Tree 

Regression 

0.25 0.06 0.00 0.21 

8 Linear SVM 0.08 0.01 0.91 0.05 

9 Quadratic SVM 0.04 0.00 0.97 0.03 

10 Cubic SVM 0.04 0.00 0.98 0.03 

11 Fine Gaussian 

SVM 

0.24 0.06 0.07 0.19 

12 Medium Gaussian 

SVM 

0.10 0.01 0.85 0.07 

13 Coarse Gaussian 

SVM 

0.10 0.01 0.83 0.07 

14 Boosted Ensemble 0.11 0.01 0.82 0.07 

15 Bagged Ensemble 0.09 0.01 0.86 0.07 

16 Rational Quadratic 

GPR 

0.04 0.00 0.97 0.03 

17 Squared 

Exponential GPR 

0.04 0.00 0.98 0.03 

18 Matern 5/2 GPR 0.06 0.00 0.95 0.04 

19 Exponential GPR 0.04 0.00 0.97 0.03 

20 Narrow ANN 0.07 0.01 0.92 0.05 

21 Medium ANN 0.05 0.00 0.95 0.04 

22 Wide ANN 0.05 0.00 0.97 0.03 

23 Bilayered ANN 0.06 0.00 0.94 0.04 

24 Trilayered ANN 0.05 0.00 0.95 0.04 

25 SVM Kernel 0.06 0.00 0.94 0.04 

26 Least Square 

Kernel 

0.08 0.01 0.91 0.05 

 

Table 4: BTE Model predictions performance of different algorithms 

Model 

Number 

Model Type RMSE 

(Validation) 

MSE 

(Validation) 

R-Squared 

(Validation) 

MAE 

(Validation) 

1 Simple Linear 

Regression 

0.06 0.00 0.94 0.06 

2 Interaction Linear 

Regression 

0.07 0.01 0.93 0.06 

3 Robust Linear 

Regression 

0.06 0.00 0.94 0.06 

4 Stepwise Linear 

Regression 

0.07 0.00 0.94 0.06 
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As discussed earlier, the model selection is 

based on 3 features – R-squared value, RMSE 

(Root Mean Square Error) and MAE (Mean 

Absolute Error). 

All the 3 features for each model have been 

obtained from the results section of Regression 

Learner App in Matlab-2023. The model that 

has displayed the Highest R-squared value, 

Lowest RMSE value and Lowest MAE value 

has been selected in each of the cases. 

 

 

In BTE model, Stepwise Linear Regression 

algorithm was selected as it gave an R-squared 

value of 0.99, RMSE value of 0.2234 and MAE 

value 0.01 which were comparatively the 

Highest, lowest, and lowest respectively.   

 

 

 

 

 

 

Model 

Number 

Model Type RMSE 

(Validation) 

MSE 

(Validation) 

R-Squared 

(Validation) 

MAE 

(Validation) 

5 Fine Tree 

Regression 

0.03 0.00 0.98 0.03 

6 Medium Tree 

Regression 

0.12 0.01 0.80 0.11 

7 Coarse Tree 

Regression 

0.27 0.07 0.00 0.24 

8 Linear SVM 0.07 0.00 0.94 0.06 

9 Quadratic SVM 0.03 0.00 0.98 0.03 

10 Cubic SVM 0.03 0.00 0.98 0.03 

11 Fine Gaussian 

SVM 

0.25 0.06 0.11 0.22 

12 Medium Gaussian 

SVM 

0.07 0.00 0.94 0.05 

13 Coarse Gaussian 

SVM 

0.09 0.01 0.88 0.07 

14 Boosted Ensemble 0.10 0.01 0.87 0.08 

15 Bagged Ensemble 0.10 0.01 0.87 0.08 

16 Rational Quadratic 

GPR 

0.02 0.00 0.99 0.02 

17 Squared 

Exponential GPR 

0.02 0.00 0.99 0.02 

18 Matern 5/2 GPR 0.04 0.00 0.98 0.03 

19 Exponential GPR 0.02 0.00 0.99 0.02 

20 Narrow ANN 0.03 0.00 0.98 0.02 

21 Medium ANN 0.05 0.00 0.97 0.04 

22 Wide ANN 0.03 0.00 0.99 0.02 

23 Bilayered ANN 0.04 0.00 0.98 0.03 

24 Trilayered ANN 0.05 0.00 0.96 0.04 

25 SVM Kernel 0.05 0.00 0.96 0.04 

26 Least Square 

Kernel 

0.06 0.00 0.94 0.05 

 



https://doi.org/10.36375/prepare_u.iiche.a408 

Fig 1. Actual vs model predicted outcome of 

BTE 

 

In the BSFC model, Tree algorithm was 

selected as it gave R-squared value of 0.98, 

RMSE value of 0.034 and MAE value 0.025 

which were comparatively the Highest, lowest, 

and lowest respectively.  

 

Fig 2. Actual vs model predicted outcome of 

BSFC 

 

 

In the NOx model, Gaussian Process 

Regression-Matern 5/2 algorithm was selected 

as it gave R-squared value of 0.99, RMSE value 

of 0.00047 and MAE value 0.016 which were 

comparatively the Highest, lowest, and lowest 

respectively.   

Fig 3. Actual vs model predicted outcome of 

NOx 

Fig 1 ,2 and 3 shows the best model 

performance, namely experimental data with 

model predictions and they're almost 

overlapping for BTE, BSF and NOx 

respectively. 

 

 

3.1. Optimization results: 

 

Once a reliable and accurate model is 

shortlisted, the next objective of this study is to 

find the optimum value of 3 input parameters 

namely engine load, Palm Biodiesel % and 

ethanol% so that BTE is maximized and BSF 

and NOx are minimized simultaneously.  Since 

the 3 objectives are conflicting in nature, a 

multi-objective genetic algorithm is used here 

to strike a balance and create a pareto optimal 

front. 

The Pareto-optimal front, a fundamental 

concept in multi-objective optimization, 

represents a set of solutions where no individual 

solution can be improved in one objective 

without degrading at least one other objective. 

In other words, these solutions embody the best 

possible compromises between conflicting 

objectives, showcasing the trade-offs inherent 

in the problem at hand. The Pareto front is not 

a single solution but a collection of diverse, 

non-dominated solutions, each offering a 

unique balance between the competing criteria. 

Finding these solutions is crucial in decision-

making processes where multiple, often 

conflicting, objectives need to be considered 

simultaneously. These objectives could be Fuel 

consumption minimization, Thermal efficiency 

maximization, or NOx reduction, and the Pareto 

front reveals the spectrum of solutions that 

optimally balance these goals. Determining the 

Pareto front involves utilizing optimization 

algorithms like Multi-Objective Genetic 

Algorithms (MOGAs), which iteratively evolve 

a population of potential solutions, ensuring 

that no solution dominates another in all 

objectives. The Pareto-optimal front is 

invaluable for decision-makers, providing a 

comprehensive understanding of the solution 

space and enabling them to make well-informed 
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decisions based on the available trade-offs 

among conflicting objectives. 

Fig 4 shows Pareto optimal solutions for BTE 

vs BSFC, Fig 5 shows Pareto optimal solutions 

for BTE vs NOx, Fig 6 shows Pareto optimal 

solutions for BSFC vs NOx 

 

 

 

 

Table5 Summarizes the Pareto optimal 

solutions after applying a multi-objective 

genetic algorithm. 

 

 

Fig 4: Pareto optimal solutions for BTE vs BSFC 

 

Fig 5: Pareto optimal solutions for BTE vs NOx 
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Fig 6: Pareto optimal solutions for BSFC vs NOx 

 

 

 

Table 5: Pareto optimal solutions after applying multi-objective genetic algorithm 

load% 

(A) 

Palm-biodiesel 

(B) 

Ethanol 

(C) 

BTE BSFC NOx 

20.00 5.00 5.00 0.19 0.81 0.11 

61.89 5.08 5.29 0.57 0.35 0.60 

75.34 5.78 5.08 0.69 0.22 0.70 

20.00 5.00 5.00 0.19 0.81 0.11 

93.46 6.09 5.05 0.85 0.12 0.81 

28.11 5.55 5.07 0.26 0.81 0.22 

98.75 6.83 5.03 0.89 0.12 0.83 

43.71 6.16 5.21 0.40 0.51 0.42 

35.98 5.23 5.09 0.33 0.51 0.32 

23.47 5.31 5.20 0.22 0.81 0.16 

30.79 5.09 5.01 0.29 0.51 0.25 

81.15 5.43 5.02 0.74 0.22 0.74 

29.55 5.88 5.07 0.27 0.81 0.24 

54.97 6.26 5.03 0.50 0.35 0.53 

38.98 5.21 5.27 0.36 0.51 0.36 

46.85 6.11 5.03 0.43 0.51 0.45 

92.97 5.11 5.15 0.85 0.12 0.80 

75.39 5.52 5.12 0.69 0.22 0.70 
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4. Conclusion:  

 

This study aims to determine the optimal 

proportions of palm biodiesel and ethanol in a 

biodiesel-ethanol (bio-diesohol) blend. It 

assesses how load, the shares of palm biodiesel 

and ethanol, impact Brake Thermal Efficiency 

(BTE), Brake Specific Energy Consumption 

(BSFC), and NOx emissions through a multi-

objective genetic algorithm. Subsequently, 

comprehensive 26 machine learning models are 

established to precisely forecast engine 

performance. Lastly, a sophisticated hybrid 

modelling approach is employed to explore the 

multi-objective genetic algorithm optimization 

of engine input parameters and response 

variables. 
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