Synthesis, characterization and degradation of Boron, Cerium and silver ternary doped titanium dioxide photocatalyst via EDTA citrate method using ampicillin antibiotic under Sunlight

<u>Yash Mishra, Dr Hari Mahalingam</u> National Institute of technology Karnataka,Surathkal (Department of Chemical Engineering) yash250025@gmail.com

Abstract

Nowadays, we can see that in river water, traces of antibiotics can be found, which is an emerging problem. Also, pharmaceutical companies' wastewater contains antibiotic traces present in it in a significant amount which makes it an excellent experimental domain to work upon. Which is very harmful if taken by humans without its treatment, so to treat it as early as possible is very necessary, else the bacteria emerging in that water will be converted to superbugs and then curing the disease from that bacteria will be exceedingly difficult as they have resistive power to that antibiotic. For that, we have prepared a tri-doped photocatalyst by doping boron cerium and silver in a titanium dioxide structure. It can work under sunlight light because the presence of silver in this boron amount is increased so that it can satisfactorily degrade antibiotics. Cerium is for water disinfection in the further catalyst. Its amount was also increased. Then the characterization analysis was performed with the help of DLS analysis with the help of a nanoparticle size analyzer, and we got particle size in the range of 115 to 600 nanometer XRD analysis. We got a band gap Of 2.3 to 2.4 electron Volt.BET surface area analysis showed us a surface area of about 25 m2/g.So instead of the UVA lights now, it was performed under the sunlight and the degradation percent was increased significantly to approx 70 percent.

Keywords :- PhotoCatalyst, antibiotic, Ampicillin,Sunlight,EDTA Citrate Method,Ternary –doping

INTRODUCTION

Rapid modernization were the most important contributors to water pollutants for the duration of the world. nowadays. pharmaceutical residues detected in the µg/L-ng/L variety in water, groundwater, surface and consuming water resources are considered as emerging contaminants due to the extended opportunity of improvement of superbugs. A recent newspaper article has pointed out the presence of superbugs in the river Ganga, a primary river in India. some other article has highlighted the pollution due to antibiotics in rivers everywhere in the international, with the concentrations often exceeding the threshold limits. nearly 90% of the antibiotics are excreted in their determined form from the human body, which subsequently reaches the sewage treatment plants . The considerable assets of antibiotic residues because of the anthropogenic activities are partially treated or untreated effluents from sewage treatment flowers, hospitals, pharmaceutical manufacturing and industries.Fluoroquinolones,

carbapenems, and cephalosporins are the maximum generally said class of antibiotic residues in the effluent vegetation treatment of India. Ampicillin belongs to the fluoroquinolone magnificence of antibiotics, and they're used to treat a variety of bacterial infections. Their presence in water bodies has been suggested in the range of 5,000-31,000 μ g/L and 251,000 μ g/L, respectively.

The predicted No-impact concentrationminimal Inhibitory concentration (PNEC-MIC) for the prevention of growing resistance is postulated based technique endorsed on the by Bengtsson-Palme and Larsson (2016) and by way of the Antimicrobial Resistance (AMR) Industry Alliance (2018). The PNEC for ampicillin is 0.4 µg/L . The capacity adverse results of those antibiotic residues are vegetation irrigated with contaminated water ends in bio-accumulation within the food chain (from the farm to the table and then into the human body), the aquatic existence is affected due to quandary of the mild penetration, sewage drains get clogged with the bacterial biofilms due accumulation/sorption to the of antibiotic residues onto the sewage sludge, and the switch of pathogenic (antibiotic-resistant) genes into wholesome microbes promote an growth in superbugs . therefore, there is a pressing want to deal with these wastewaters. diverse physical, chemical, and organic remedy methods like membrane strategies, reverse osmosis; activated carbon, chlorination; cardio, and anaerobic strategies had been in existence for the remedy of pharmaceutical wastewaters. The fundamental drawbacks of these remedy methods are clogging of membranes, carbon regeneration, obstacle of size exclusion range, disposal problems (physio-chemical remedy), biomass accumulation, sluggish technique, and requirement of long startup intervals (biological treatment). due to the poor degradability of antibiotics and the unsuitableness of wastewater remedy plants to deal with that pollution, there's

a need for the improvement of opportunity sustainable remedy methods . Photocatalysis, with the to degrade the organic potential contaminants in water and wastewater, serves this cause . Semiconductor-based totally photocatalysis is one of the superior oxidation processes (AOPs) for the removal of organic contaminants via the generation of powerful oxidizing marketers [14]. TiO2 is the maximum broadly used photocatalyst as it's far effectively available, non-poisonous, chemically, and mechanically solid. but seen light usage because of the huge bandgap of 3.2 eV is a prime quandary. the usage of seen mild active photocatalysts is gaining importance in recent times, which may be executed through engineering the bandgap of semiconductors through doping. diverse metals (transition-Fe, Cu, Co, Zn, Mn, Mo, Ni, W; rare earth-Ce, Gd. European, Y; and others-Li, Ge, Si, Sn, Pb,) or non-metals (B, C, N,S, P) help in narrowing the bandgap for effective usage of visible light, and gives splendid chemical stability .it's miles glaring that the presence of rising pollution mainly antibiotic residues in water bodies and the ensuing linkage to the increasing antimicrobial resistance is of great challenge and on this context, it'd be suited to have a seen mild photocatalyst that is simultaneously effective for each photo-degradation in addition to disinfection. preserving this goal in mind, the dopants are narrowed down to cerium (Ce) and boron (B) for the reasons said below, uncommonearth metallic doping like cerium results in the narrowing of the bandgap and promotes the adsorption capacity for this reason, enhancing photocatalytic hobby by way of providing better touch between pollutant and photocatalyst.

photocatalysts Ce-TiO2 had been suggested for the degradation of phenol, chlorophenol, polyvinylpyrrolidone, and methylene blue and disinfection of Staphylococcus aureus. some of the various non-metal dopants, B ions occupy both the substitutional and interstitial lattice positions of TiO2, the former position facilitates in narrowing of the bandgap, introduction of new power ranges and transferring of the absorption part closer to visible light even as the latter role promotes effective electron-hollow separation and reduces the recombination rate. it's also a powerful disinfectant . B-TiO2 photocatalysts were suggested for the degradation of p-nitrophenol, Orange II and disinfection azo dye, of Staphylococcus aureus and Escherichia coli. other than those, photocatalytic degradation of antibiotics (ampicillin) and dyes (Rhodamine B, RhB) had been suggested via [25–27] the use of 1. a./Cu/Ze trimetallic nano photocatalyst BiOBr/BiFeO3, and Sr/Ce/AC bimetallic nanocomposite respectively. numerous strategies for the synthesis of photocatalysts like sol-gel, doped hydrolysis, hydrothermal, solvothermal, co-precipitation have and been pronounced. The **EDTA-citrate** technique affords a higher catalyst yield and additionally improves the properties of the catalyst debris. EDTA forms a hoop structure with a maximum of the metallic ions and enables the molecular level of mixing. there's little or no or no literature on the synthesis of Ce-TiO2 ,Ag-TiO2 and B-TiO2 using photocatalytic method. The this degradation of ampicillin by means of TiO2 was studied , and a few researchers have mentioned the usage of doped TiO2, BiOBr and Fe debris . A summary of the research carried out on

photocatalytic degradation the of ampicillin is provided in tables S9 - S10 of supplementary. in this manuscript, the photocatalytic degradation of ampicillin under sunlight with the use of a series of B,Ag and Ce-doped TiO2 photocatalysts synthesized by the EDTA-citrate approach has been finished at the side of the photocatalytic disinfection of E.coli. The precise stress MTCC 9541 used for the disinfection examination is remoted/derived from the river Ganga in view of the full-size antimicrobial resistance present in this river.

Materials

The following chemicals were used without further purification in the synthesis of the catalysts TiO2 (Degussa P25, 99.9% pure) from Evonik (Japan), Boric acid, EDA, citric acid and ammonia solution from Loba Chemie Pvt Ltd. (India), Cerium nitrate and silver nitrate from Sigma-Aldrich (India), Ampicillin from Sigma-Aldrich (USA). Distilled water was employed in the preparation of all solutions.

Synthesis of Nanoparticles

Two ternary doped TiO_2 catalysts were made using the modified sol-gel method employing EDTA & citric acid as the chelating and complexing agents respectively. A mole ratio of 1:1:1.5 being the ratio of metal ions to EDTA and citric acid was used in the synthesis. EDTA $C_{10}H_{16}N_2O_8$) solution was made using water and ammonia.

Stoichiometric quantities of boric acid (H_3BO_3) . cerium nitrate $(Ce(NO_3)_3 \cdot 6H_2O),$ silver nitrate (AgNO₃), and titanium dioxide (TiO₂) in aqueous form was added to the solution & stirred. Then, solid citric acid ($C_6H_8O_7$) was added to the above mixture. Ammonia is used for adjusting the pH to 9, and the resulting mixture agitated gently was till an organometallic gel formed. Drying of the gel was done a laboratory oven at 150 °C for 24 h. The dried sample was finely crushed and subjected to calcination in a muffle furnace at 350 °C for 12 h, followed by calcining at 600 °C for 5 h. The powder thus obtained was stored in an air-tight bottle for further use. In this work, two ternary doped catalysts are synthesized and denoted as 2B-0.1Ce-0.06Ag-TiO₂, 2B-1Ce-0.06Ag-TiO₂ Due to the use of water as a solvent thus replacing the organic volatile solvents usually employed, the process be can considered as relatively green. It may be noted that Boron is an excellent disinfectant and cerium promotes the adsorption capability of the catalyst while silver has excellent antimicrobial properties plasmon and surface enabling catalysts resonance the functioning under visible or solar light. We wanted to examine in detail, the effect of increased amounts of cerium and silver in this work keeping the amount of boron dopant is constant.

LEACHING ANALYSIS :-

Leaching analysis were performed on both photo-catalyst to deduce the amount of dopants and titanium being leached while performing analysis.Results obtained are shown below

 BORON RESULTS

 2 B 1 CE 0.06 AG
 0.54 PPM

 2 B 0.1 CE 0.06 AG
 0.29PPM

CERIUM RESULTS 2 B 1 CE 0.06 AG 0.04 PPM 2 B 0.1 CE 0.06 AG 0.00 PPm

TITANIUM RESULTS 2B 1 CE 0.06 AG 0.24 PPM 2 B 0.1 CE 0.06 AG 0.11 PPM

 SILVER RESULTS

 2B 1 CE 0.06 AG
 0.00 PPM

 2 B 0.1 CE 0.06 AG
 0.00 PPM

XRD ANALYSIS :-

The XRD spectra of two doped photocatalysts are shown in below fig. As can be seen, the two spectra are nearly identical, confirming the correctness of the synthesis procedure. The peaks observed at $\Box = 24.5$ and 47° indicate the anatase phase, while the slight rise immediately following this at about 29° suggests the presence of the cerium oxide (111) phase. Since silver ion is relatively large compared to titanium and cerium, besides being present in meagre amounts, the XRD spectra do not show the presence of silver. Boron is also not indicated.

DRS ANALYSIS :-

Diffuse reflectance spectroscopy analysis was performed on the synthesized catalysts to obtain the band gap energy values as determined from the Tauc plot. In the analysis, TiO₂ considered as an indirect is semiconductor and the calculations are done on this basis. The formula used is

$$\begin{aligned}
\alpha h\nu &= \\
A (h\nu - E_g)^{n/2}
\end{aligned} \tag{1}$$

where, E_g - band gap energy (eV), α absorption coefficient, h - Planck's constant, ν - frequency of light, A constant, n = 4 (for indirect transition). The plot of $(\alpha h \nu)^{1/2}$ versus ($h \nu$) energy determines the band gap energy values which is obtained by extrapolation of the linear portion of the curve to the xaxis. Relative to the band gap energy value of TiO₂ (3.4 eV).

The characterization analysis results obtained from DRS analysis were used for plotting the graph of Absorbance Vs Energy

The characterization analysis results obtained from DRS analysis were used

for plotting the graph of (E*A) ^2 vs energy.

CALIBRATION OF AMPICILLIN ANTIBIOTIC

The photocatalytic degradation of ampicillin under sunlight irradiation is used to evaluate the performance of TiO2 and synthesized the photocatalysts. A irradiation time of3 hours with a mean intensity of 200 ± 20 lx and a temperature of 28°C is used in the conduct of experiments. The volume is 200 mL of 10 mg/L, 20 mg/L, and 30 mg/L pollutant concentration (Ampicillin) and the catalyst loading is chosen as 1 g/L. The samples are kept in the dark for 30 minutes to attain complete adsorption before starting the illumination. Liquid samples are taken at regulartime intervals and filtered & centrifuged to remove the solid catalyst particles.

The percentage of Ampicillin was calculated according to the following equation:

Ampicillin degradation = $(c0-c/c0 \times 100\%)$

where Co-Initial concentration,

C - Final concentration

The calibration analysis was performed for the ampicillin antibiotic with the help of UV Spectro photometer and the respective absorbance vs wavelength graph was plotted as shown in below figure and also absorbance Vs concentration graph was plotted for the ampicillin antibiotic as depicted in the second figure

Fig :- Absorbance Vs Wavelength curve for Ampicillin Antibiotic

comparison amonf gboth photo-catalyst second one was having more size since it has more amount of cerium content being doped.

As the graph below clearly shows the size of few nano particles is more than the desired value it is because the boron may not have doped correctly in the Ti-O2 or due to the formation of the agglomerates.

ATOMIC CONFRIGUATION :- 2B 0.1B 0.06AG

Fig Absorbance Vs Concentration graph for Ampicillin Antibiotic

DLS ANALYSIS :-

The particle size was more than the previously formed catalyst which is usual as the amount of boron is increased in the catalyst and also in

ATOMIC CONFRIGUATION:-2B 1B 0.06Ag-TiO2

PARTICLE SIZE RESULTS

2B 1 CE 0.06 AG	209.8 NM
2 B 0.1 CE 0.06 AG	669.8 NM

SEM Analysis

The surface morphologies of undoped TiO2, B-Ce-Ag-TiO2, and B-Ce-Ag samples are characterized by SEM and the images are shown below .No specific treatment is provided to the TiO2 sample prior to SEM analysis as it was commercially available. However, in the case of synthesized ternary doped catalysts prior to SEM analysis, they are sonicated for 10 min and then dried. photocatalyst The ternary doped particles appear as loosely packed irregular/elongated aggregates with a coarse surface, whereas TiO2 particles appear as closely packed small aggregates with a smooth surface. In the doped catalysts, a large number of nanoparticles are assembled to form aggregates on the primary particles. Higher agglomeration with an increase in the Ce dopant concentration can be attributed to the larger ionic radius of Ce than that of Ti, implying that it cannot enter the lattice of TiO2 and therefore, Ce peaks are observed in the XRD spectra However, an opposite trend of a decrease in agglomeration (as well as particle size) with an increase in dopant concentration boron was The decrease observed. in agglomeration and particle size can be attributed to the smaller ionic radius of B than that of Ti due SEM Images of the first ternary doped photo catalyst were analysed and best 4 images among them were selected.

SEM Results.

ATOMIC CONFRIGUATION:- 2B 0.1CE 0.06AG

ATOMIC CONFRIGUATION :-2B 1CE 0.06AG

The images of the second photo catalyst were also analyzed and best 4 images were selected from them. Agglomerates can be seen in the below images

BET SURFACE AREA ANALYSIS: -

Langmuir and BET plot analysis gave the desired results. The pore size and pore volume were also found in the desired range.The outgas time was 6 hrs.The method used for the BET surface analysis is physisorption method. The model of the BET surface area which describes the quantity of adsorbed gas as a function of the relative pressure, p/po.In the BET suface area analysis we use the area per molecule for the calculation olf whole BET surface area.

GOT bet surface area as 23m^2/g.

RAMAN SPECTROSCOPY:-

Raman spectroscopy is employed to understand the crystal structure of the photocatalysts through vibrational modes, and the spectrum is depicted below. The anatase Raman modes in the undoped and doped samples are found at: Eg(1)-143 cm-1, Eg(2)-196 cm-1, Eg(3)-636 cm-1, B1g-396 cm-1, A1g +B1g-5176cm-1. The intensity of anatase Raman mode, especially Eg(1), is found to be higher in all the photocatalysts . It is noted that as in the XRD, here also, the boron peaks are not detectable.

DEGRADATION RESULTS:-

The degradation studies of ampicillin best-performing ternary-doped for photocatalysts, i.e., B2Ce1Ag0.1TiO2 and B2Ce0.1Ag0.06TiO2 were carried out under sunlight at room temperature. The degradation in the presence of TiO2 shows good results, whereas the remaining ternary-doped catalysts are not performed significantly under the sunlight. The results are shown below in the graphs. The graph above shows the degradation of ampicillin under sunlight in which the effect of photocatalytic degradation of ampicillin was studied at 10 ppm, 20 ppm, and 30 ppm using ternary-doped catalysts i.e., B2Ce1Ag0.1TiO2 and B2Ce0.1Ag0.06TiO2. To compare the ternary-doped catalyst performance with TiO2, the degradation study was carried out with TiO2. An optimum value is noticed for the co-doped catalyst from previously done research work, while an increasing trend is observed Ternary-doped for the catalysts. TiO2 showed almost 100% degradation at an optimum catalyst loading of 1g/l in 10ppm, 20ppm, and 30ppm concentrations of ampicillin. After placing the whole system of each concentration for 30min in dark conditions. the degradation was observed in 20% for 30ppm solution and 35% for 10ppm, and after 90min the ampicillin is almost degraded to 100% for all concentrations (10ppm, 20ppm, 30ppm). After 90 min, the degradation of ampicillin by TiO2 was more than 96%. For ternary-doped 2B-1Ce-0.1Ag-TiO2, catalyst after 30min of placing in dark conditions, the degradation was observed at a minimum of 16% at 50ppm and a maximum of 27% at 10ppm. After 120min of placing the whole system under sunlight, the

degradation was observed at a minimum of 45% and a maximum of 68%. Among both photo catalyst one with more dopant concentration of cerium was best performing.

CONCLUSION: -

The solar light-driven photocatalytic degradation of ampicillin using B-TiO2, Ag-TiO2 and Ce-TiO2 has been carried out i

n this study. The photocatalysts synthesized by the EDTA-citrate method showed particle size in the nanoscale range and surface area in the field of 25 m2/g. T The XRD diffraction peaks of Ce suggest the presence of Ce on the surface of TiO2

due to its large radius, and the absence of prominent boron peaks indicates the uniform dispersion of B in TiO2. The bandgap values obtained are in the range of 2.4–2.7 eV, which suggests an introduction of a new energy level for effective charge separation and of recombination. The reduction enhancement in the photocatalytic activity of Ce-TiO2 and Ag-TiO2can be ascribed to the higher adsorption ability of these photocatalysts when compared with boron as the water adsorbed hydroxyl surface generates more radicals and acts as a photoexcited hole enhancement An in the trap. photocatalytic activity of B-TiO2 to the presence of B in the interstitial lattice position where there is a formation of a shallow level below the conduction band as confirmed from DRS, which reduces recombination and due to the presence of Ti3+, which acts as trapping sites of photogenerated electrons. The degradation of ampicillin is found to obey pseudo-first-order kinetics with high k values and R2, suggesting an increase in the rate of the reaction. The photocatalytic degradation of ampicillin occurred mainly through has hydroxylation, decarboxylation, defluorination, and transformation of the piperazine ring with an intact quinolone moiety which finally forms lower molecular weight/less harmful products. The absence/decrease in the intensity of the pollutants peak in the HPLC/LC-MS data validates their effective photo catalytic degradation under sunlight. However, the COD reduction in some photocatalysts was found to be lesser than the degradation observed through a spectrophotometer, which might be due to the formation of other, less harmful and stable organic compounds as observed in the LC-MS.

The photocatalysts are found to be durable for up to three consecutive recycles. The trapping experiment results implied that the e- and OH are the dominant active species involved during the photocatalytic degradation of ampicillin. From the above analysis, one at. % Ce-TiO2 and one at. % B-TiO2 are found to be the bestperforming photocatalysts, which can be due to the higher adsorption rates in cerium and interstitial lattice position of boron, along with a decrease in the bandgap. Their disinfection efficiencies (of the best-performing catalysts of degradation) are found to be in the range of 97–99.99%. Hence, these sunlight-active photocatalysts could be the facile and sustainable solution for the emerging problem of antimicrobial resistance. The immobilization of these photocatalysts onto suitable support may be employed for large-scale use in the near future to solve the looming environmental crisis.The pollutant named ampicillin was almost degarded about 70 percent.

References:-

[1] K. Kümmerer, Antibiotics in the aquatic environment – a review – part II,

Chemosphere 75 (2009) 435–441, https://doi.org/10.1016/j. Chemosphere.2008.12.006.

[2] C. Hai Wei, X. Hu Tang, J. Rong Liang, and S. Ying Tan, "Preparation, characterization

and photocatalytic activities of boronand cerium-codoped TiO2," Journal of

Environmental Sciences, vol. 19, no. 1, 2007, doi: 10.1016/S1001-0742(07)60015-1. [3] G. B. Vieira, H. J. José, M. Peterson, V. Z. Baldissarelli, P. Alvarez, and R. de Fátima

Peralta Muniz Moreira, "CeO2/TiO2 nanostructures enhance adsorption and photocatalytic

degradation of organic compounds in aqueous suspension," J Photochem Photobiol A

Chem, vol. 353, pp. 325–336, 2018, doi: 10.1016/j.jphotochem.2017.11.045.

[4] J. Arun, V. Felix, M. J. Monica, and K. P. Gopinath, "Application of Nano-Photocatalysts

for Degradation and Disinfection of Wastewater," in Springer Briefs in Information

Systems, 2019, pp. 249–261. doi: 10.1007/978-3-030-02381-2_11.

[5] M. Manjunatha, P. R. Chandewar, and H. Mahalingam, "Exploring the Synergy of B, Ce

Dopants in Codoped Titanium Dioxide Multifunctional Photocatalysts for Antibiotic

Degradation and Microbial Disinfection Under Solar Light," physica status solidi (a), vol.

219, no. 3, p. 2100581, Feb. 2022, doi: 10.1002/pssa.202100581.

[6]. A.M. Deegan, B. Shaik, K. Nolan, K. Urell, M. Oelgemöller, J. Tobin, A. Morrissey,

Treatment options for wastewater effluents from pharmaceutical companies, Int. J.

Environ. Sci. Technol. 8 (2011) 649–666,

https://doi.org/10.1007/BF03326250.

[7].D. Kanakaraju, B.D. Glass, M. Oelgemöller, Advanced oxidation process-mediated

removal of pharmaceuticals from water: a review, J. Environ. Manage. 219 (2018)

189–207, https://doi.org/10.1016/j.jenvman.2018. 04.103.

[8].U. Riaz, S.M. Ashraf, J. Kashyap, Role of conducting polymers in enhancing TiO2-

based photocatalytic dye degradation: a short review, Polym. - Plast. Technol. Eng.

54 (2015) 1850–1870, https://doi.org/10.1080/03602559.2015. 1021485

[9].G.B. Vieira, H.J. José, M. Peterson, V.Z. Baldissarelli, P. Alvarez, R. De Fátima

Peralta Muniz Moreira, CeO2/TiO2 nanostructures enhance adsorption and

photocatalytic degradation of organic compounds in aqueous suspension,

J. Photochem. Photobiol. A Chem. 353 (2018) 325–336, https://doi.org/10.1016/

j.jphotochem.2017.11.045.

[10].J. Reszczyńska, T. Grzyb, J.W. Sobczak, W. Lisowski, M. Gazda, B. Ohtani,

A. Zaleska, Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3

+) titania photocatalysts, Appl. Catal. B Environ. 163 (2015) 40–49, https://doi.

org/10.1016/j.apcatb.2014.07.010.

[11].Y. Wang, Y. Wu, H. Yang, X. Xue, Z. Liu, Doping TiO2 with boron or/and cerium

elements: effects on photocatalytic antimicrobial activity, Vacuum 131 (2016)

58-64,

https://doi.org/10.1016/j.vacuum.2016.0 6.003.

[12].R. Jaiswal, N. Patel, A. Dashora, R. Fernandes, M. Yadav, R. Edla, R.S. Varma, D.

C. Kothari, B.L. Ahuja, A. Miotello, Efficient Co-B-codoped TiO2 photocatalyst for

degradation of organic water pollutant under visible light, Appl. Catal. B Environ.

183 (2016) 242–253, https://doi.org/10.1016/j.apcatb.2015.10 .041

[13].G. Sharma, V.K. Gupta, S. Agarwal, S. Bhogal, M. Naushad, A. Kumar, F.J. Stadler,

Fabrication and characterization of trimetallic nano-photocatalyst for remediation

of ampicillin antibiotic, J. Mol. Liq. 260 (2018) 342–350, https://doi.org/

10.1016/j.molliq.2018.03.059.

[14].W.E.I. Chao-hai, T. Xin-hu, L. Jierong, T.A.N. Shu-ying, Preparation,

characterization and photocatalytic activities of boron- and cerium-codoped TiO2,

J. Environ. Sci. 19 (2004) 90-96.

[15] S. Das et al., "Disinfection of multidrug resistant escherichia coli by solar-photocatalysis

using fe-doped ZnO nanoparticles," Sci Rep, vol. 7, no. 1, pp. 1–14, 2017, doi:

10.1038/s41598-017-00173-0.

[16] S. Teixeira et al., "Photocatalytic degradation of recalcitrant micropollutants by reusable

Fe3O4/SiO2/TiO2 particles," J Photochem Photobiol A Chem, vol. 345, 2017, doi:

10.1016/j.jphotochem.2017.05.024.

[17] M. Manasa, P. R. Chandewar, and H. Mahalingam, "Photocatalytic degradation of

ciprofloxacin & norfloxacin and disinfection studies under solar light using boron &

cerium doped TiO2 catalysts synthesized by green EDTA-citrate method," Catal Today,

2020, doi: 10.1016/j.cattod.2020.03.018.

[18] P. Sekar, D. Sadanand Joshi, M. Manjunatha, and H. Mahalingam, "Enhanced disinfection

of E. faecalis and levofloxacin antibiotic degradation using tridoped B-Ce-Ag TiO2

photocatalysts synthesized by ecofriendly citrate EDTA complexing method,"

Environmental Science and Pollution Research, no. 0123456789, 2022, doi:

10.1007/s11356-022-19268-x.

[19].G. Sharma, D.D. Dionysiou, S. Sharma, A. Kumar, A.H. Al-Muhtaseb, M. Naushad,

F.J. Stadler, Highly efficient Sr/Ce/activated carbon bimetallic nanocomposite for

photoinduced degradation of rhodamine B, Catal. Today 335 (2019) 437–451,

https://doi.org/10.1016/j.cattod.2019.03. 063.

[20].F. Mikaeili, S. Topcu, G. Jodhani, P.-I. Gouma, Flame-Sprayed Pure and Ce-Doped

TiO2 Photocatalysts, Catalysts. 8 (2018) 342, https://doi.org/10.3390/

catal8090342.