Analysis of Thermal Damage in Biological Tissue during External Step Heating Using Non-Fourier Bio-Heat Transfer Model – A Finite Difference Approach

  • Jnanaranjan Acharya National Institute of Technology Silchar, Assam
  • Aishik Dinda NIT Silchar
  • Dr. Dipankar Bhanja NIT Silchar
  • Dr. Sujit Nath NIT Silcnar
  • Prof. Rahul Dev Misra NIT Silciar
Keywords: Thermal relaxation time, Dual-phase lag model, Henrique's burn model, Finite difference method

Abstract

The present work focuses on the thermal damage in living tissue under an external step-heating exposure. A Non-Fourier type of bioheat transfer model, including the effect thermal relaxation time due to thermal inertia and microstructure of biological tissue, has been adopted to investigate the thermal damage. A trainsient blood perfusion rate has been taken at different locations of the body in this analysis. Considering all of the transient PDEs, the implicit Backward in Time and Central in Space (BTCS) framework has been used to create the necessary finite difference equations. Burn integral relation proposed by Henriques, has been undertaken to predict second-degree and third-degree burn time. Finally, a comparison is proposed for three different bioheat transfer models like Penne's, Thermal wave, and Dual-Phase Lag (DPL) models to illustrate the effect of different relaxation times on thermal damage.

Author Biographies

Jnanaranjan Acharya, National Institute of Technology Silchar, Assam

Research Scholar

Aishik Dinda, NIT Silchar

Research Scinoiar

Dr. Dipankar Bhanja, NIT Silchar

Associare Professor

Dr. Sujit Nath, NIT Silcnar

Associare Professor

Prof. Rahul Dev Misra, NIT Silciar

Professor

References

(1)Pennes, H. H. (1948). Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of applied physiology, 1(2), 93-122. https://doi.org/10.1152/jappl.1948.1.2.93

(2)Chato, J. C. (1980). Heat transfer to blood vessels. Journal of biomechanical engineering, 102(2), 110-118. https://doi.org/10.1115/1.3138205

(3)Weinbaum, S. J. L. M., Jiji, L. M., & Lemons, D. E. (1984). Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer—Part I: Anatomical foundation and model conceptualization. https://doi.org/10.1115/1.3138501

(4)Cattaneo, C. (1958). A form of heat-conduction equations which eliminates the paradox of instantaneous propagation. Comptes Rendus, 247, 431.

(5)Vernotte, P. (1958). Les paradoxes de la theorie continue de l'equation de la chaleur. Compt. Rendu, 246, 3154-3155.

(6)Mitra, K., Kumar, S., Vedevarz, A., & Moallemi, M. K. (1995). Experimental evidence of hyperbolic heat conduction in processed meat. https://doi.org/10.1115/1.2822615

(7)Chester, M. (1963). Second sound in solids. Physical Review, 131(5), 2013. https://doi.org/10.1103/PhysRev.131.2013

(8)Vedavarz, A., Kumar, S., & Moallemi, M. K. (1994). Significance of non-Fourier heat waves in conduction. https://doi.org/10.1115/1.2910859

(9)Kaminski, W.: Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. J. Heat Transf. Trans. ASME 112(3), 555–560 (1990). https://doi.org/10.1115/1.2910422

(10)Diller, K. R., & Hayes, L. J. (1991). Analysis of tissue injury by burning: comparison of in situ and skin flap models. International journal of heat and mass transfer, 34(6), 1393-1406. https://doi.org/10.1016/0017-9310(91)90283-K

(11)Xu, F., Lu, T. J., & Seffen, K. A. (2008). Biothermomechanical behavior of skin tissue. Acta Mechanica Sinica, 24(1), 1-23. https://doi.org/10.1007/s10409-007-0128-8

(12)S.C. Jiang, N. Ma, H.J. Li, X.X. Zhang, Effects of thermal properties and geometrical dimensions on skin burn injuries, Burns 28 (2002) 713–717. https://doi.org/10.1016/S0305-4179(02)00104-3

(13)Talukdar, P., Das, A., & Alagirusamy, R. (2016). Heat and mass transfer through thermal protective clothing–A review. International Journal of Thermal Sciences, 106, 32-56. https://doi.org/10.1016/j.ijthermalsci.2016.03.006

(14)John A. Weaver, Alice M. Stoll, Mathematical model of skin exposed to thermal radiation, Aerospace Medical Research Department, Naval Air Systems Command, NADC-MR-6708, 1967. https://doi.org/10.21236/ad0659973

(15)Talukdar, P., Alagirusamy, R., & Das, A. (2014). Heat transfer analysis and second degree burn prediction in human skin exposed to flame and radiant heat using dual phase lag phenomenon. International Journal of Heat and Mass Transfer, 78, 1068-1079. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.073

(16)Shitzer, A., Arens, E., & Zhang, H. (2016). Compilation of basal metabolic and blood perfusion rates in various multi-compartment, whole-body thermoregulation models. International journal of biometeorology, 60(7), 1051-1064. https://doi.org/10.1007/s00484-015-1096-5

Published
2022-04-14
How to Cite
[1]
Acharya, J., Dinda, A., Bhanja, D.D., Nath, D.S. and Misra, P.R.D. 2022. Analysis of Thermal Damage in Biological Tissue during External Step Heating Using Non-Fourier Bio-Heat Transfer Model – A Finite Difference Approach . ACMS 2022, April 14-16, 2022, IIChE, Kolkata. (Apr. 2022). DOI:https://doi.org/10.36375/prepare_u.iiche.a369.
Section
Articles