Covalent grafting of Diglycolamide functionalities over Merrifield resin for the uptake of trivalent f-block metal ions from acidic aqueous feed

  • Swapnil Rajput Institute of Chemical Technology, Mumbai
  • Saurabh Muley Institute of Chemical Technology, Mumbai
  • Ketan Kulkarni Institute of Chemical Technology, Mumbai
  • Seraj A. Ansari Bhabha Atomic Research Centre, Trombay
  • Prasanta K. Mohapatra Bhabha Atomic Research Centre, Trombay
  • Anant R. Kapdi Institute of Chemical Technology, Mumbai
  • Anand V. Patwardhan Institute of Chemical Technology, Mumbai
Keywords: Covalent grafting, Diglycolamide, Adsorption, f-block metal ions

Abstract

In the present work, N, N- Dibutyl diglycolamide functionalities were covalently grafted over Merrifield resin by following novel green chemistry principles during the entire process of synthesis. Minimal use of hazardous chemicals, improved yields and moderate reaction conditions were the bedrocks throughout the process. This grafted resin was used as an adsorbent for the uptake of trivalent f-block elements from aqueous nitric acid feed (3M HNO3). The synthesized resin MRBB (N, N- Dibutyl diglycolamide grafted over n-butyl aminated Merrifield resin) was characterized with grafting percentage of >66%. Am3+ an actinide was used as a radiotracer for preliminary studies to check the efficacy of synthesized polymeric adsorbent. After optimization of synthesis parameters, Eu3+ salt, a surrogate lanthanide ion was used in an aqueous feed to optimize the operating parameters of adsorption. The distribution coefficients KD for different conditions were in the range of thousands but for a similar kind of work with malonamides the range was just in hundreds as reported in the available literature. The adsorption kinetics predominantly follows pseudo-second order reaction with k2 = 6.3 x 10-5 g/(mg-min). The work is an important contribution in sustainable organic, polymer and nuclear chemistry.

Author Biographies

Swapnil Rajput, Institute of Chemical Technology, Mumbai

Department of Chemical Engineering

Saurabh Muley, Institute of Chemical Technology, Mumbai

Department of Chemical Engineering

Ketan Kulkarni, Institute of Chemical Technology, Mumbai

Department of Chemical Engineering

Seraj A. Ansari, Bhabha Atomic Research Centre, Trombay

Radiochemistry Division

Prasanta K. Mohapatra, Bhabha Atomic Research Centre, Trombay

Radiochemistry Division

Anant R. Kapdi, Institute of Chemical Technology, Mumbai

Department of Chemistry

Anand V. Patwardhan, Institute of Chemical Technology, Mumbai

Department of Chemical Engineering

References

M. J. Haire. Nuclear fuel reprocessing costs. In:Proceedings of the American Nuclear Society Topical Meeting, Advances in Nuclear Fuel Management III, Hilton Head Island, South Carolina. 2003, pp. 1-16.

B. J. Mincher, G. Modolo and S. P. Mezyk. The effects of radiation chemistry on solvent extraction 3: A Review of Actinide and Lanthanide Extraction. Solvent Extr. Ion Exch. 2009; 27, 579-606. https://doi.org/10.1080/07366290903114098

J. N. Mathur, M. S. Murali and K. L. Nash. Actinide partitioning-A review. Solvent Extr. Ion Exch. 2001; 19, 357–390. https://doi.org/10.1081/SEI-100103276

P. K. Nayak, R. Kumaresan, K. A. Venkatesan, M. P. Antony and P. R. Vasudeva Rao. A New Method for Partitioning of Trivalent Actinides from High-Level Liquid Waste. Sep. Sci. Technol. 2013; 48, 1409–1416. https://doi.org/10.1080/01496395.2012.737401

A. V. Gelis and G. J. Lumetta. Actinide lanthanide separation process – ALSEP. Ind. Eng. Chem. Res. 2014; 53, 1624–1631. https://doi.org/10.1021/ie403569e

N. Asanuma, M. Harada, Y. Ikeda and H. Tomiyasu. New approach to the nuclear fuel reprocessing in non-acidic aqueous solutions. J. Nucl. Sci. Technol. 2001; 38, 866–871. https://doi.org/10.1080/18811248.2001.9715107

S. A. Ansari, P. Pathak, P. K. Mohapatra and V. K. Manchanda. Aqueous partitioning of minor actinides by different processes. Sep. Purif. Rev. 2011; 40, 43–76. https://doi.org/10.1080/15422119.2010.545466

S. I. Nikitenko, L. Venault, R. Pflieger, T. Chave, I. Bisel and P. Moisy. Potential applications of sonochemistry in spent nuclear fuel reprocessing: A short review. Ultrason. Sonochem. 2010; 17, 1033–1040. https://doi.org/10.1016/j.ultsonch.2009.11.012

J. E. Birkett, M. J. Carrott, O. D. Fox, C. J. Jones, C. J. Maher, C. V. Roube, R. J. Taylor and D. A. Woodhead. Recent developments in the Purex process for nuclear fuel reprocessing: Complexant based stripping for Uranium/Plutonium separation. Chimia (Aarau). 2005; 59, 898–904.

A. Geist, M. Weigl and K. Gompper. Minor actinide partitioning by liquid-liquid extraction: Using a synergistic mixture of bis(chlorophenyl)-dithiophosphinic acid and TOPO in a hollow fiber module for americium(II)-lanthanides (III) separation. Sep. Sci. Technol. 2002; 37, 3369–3390. https://doi.org/10.1081/SS-120014432

P. S. Dhami, R. R. Chitnis, V. Gopalakrishnan, P. K. Wattal, A. Ramanujam and A. K. Bauri. Studies on the partitioning of actinides from high level waste using a mixture of HDEHP and CMPO as extractant. Sep. Sci. Technol. 2001; 36, 325–335. https://doi.org/10.1081/SS-100001082

J. Wang, M. Xie, J. Ma, H. Wang and S. Xu. Extractant (2,3-dimethylbutyl)(2,4,4′-trimethylpentyl)phosphinic acid (INET-3) impregnated onto XAD-16 and its extraction and separation performance for heavy rare earths from chloride media. J. Rare Earths. 2017; 35, 1239–1247. https://doi.org/10.1016/j.jre.2017.07.003

H. Mohammedi, H. Miloudi, A. Tayeb, C. Bertagnolli and A. Boos. Study on the extraction of lanthanides by a mesoporous MCM-41 silica impregnated with Cyanex 272. Sep. Purif. Technol. 2019; 209, 359–367. https://doi.org/10.1016/j.seppur.2018.07.035

S. A. Ansari, P. N. Pathak, V. K. Manchanda, M. Husain, A. K. Prasad and V. S. Parmar. N,N,N’,N’-Tetraoctyl diglycolamide (TODGA): A promising extractant for actinide-partitioning from high-level waste (HLW). Solvent Extr. Ion Exch. 2005; 23, 463–479. https://doi.org/10.1081/SEI-200066296

S. A. Ansari, P. K. Mohapatra and V. K. Manchanda. A novel malonamide grafted polystyrene-divinyl benzene resin for extraction, pre-concentration and separation of actinides. J. Hazard Mater. 2009; 161, 1323–1329. https://doi.org/10.1016/j.jhazmat.2008.04.093

S. A. Ansari, P. Pathak, P. K. Mohapatra and V. K. Manchanda. Chemistry of Diglycolamides : Promising Extractants for Actinide Partitioning. Chem. Rev. 2012; 112, 1751–1772. https://doi.org/10.1021/cr200002f

L. Berthon, J. M. Morel, N. Zorz, C. Nicol, H. Virelizier and C. Madic. Diamex process for minor actinide partitioning: Hydrolytic and radiolytic degradations of malonamide extractants. Sep. Sci. Technol. 2001; 36, 709–728. https://doi.org/10.1081/SS-100103616

R. B. Gujar, S. A. Ansari, M. S. Murali, P. K. Mohapatra and V. K. Manchanda. Comparative evaluation of two substituted diglycolamide extractants for actinide partitioning. J. Radional. Nucl. Chem. 2010; 284, 377–385. https://doi.org/10.1007/s10967-010-0467-y

G. Modolo, H. Asp, C. Schreinemachers and H. Vijgen. Development of a TODGA based process for partitioning of actinides from a PUREX raffinate part I: Batch extraction optimization studies and stability tests. zSolvent Extr. Ion Exch. 2007; 25, 703–721. https://doi.org/10.1080/07366290701634578

G. Modolo, H. Asp, H. Vijgen, R. Malmbeck, D. Magnusson and C. Sorel. Demonstration of a TODGA-based continuous counter-current extraction process for the partitioning of actinides from a simulated PUREX raffinate, part II: Centrifugal contactor runs. Solvent Extr. Ion Exch. 2008; 26, 62–76. https://doi.org/10.1080/07366290701784175

P. J. Panak and A. Geist. Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine N-donor ligands. Chem. Rev. 2013; 113, 1199–1236. https://doi.org/10.1021/cr3003399

D. Whittaker, A. Geist, G. Modolo, R. Taylor, M. Sarsfield and A. Wilden. Applications of Diglycolamide Based Solvent Extraction Processes in Spent Nuclear Fuel Reprocessing, Part 1: TODGA. Solvent Extr. Ion Exch. 2018; 36, 223–256. https://doi.org/10.1080/07366299.2018.1464269

K. K. Gupta, V. K. Manchanda, M. S. Subramanian and R. K. Singh. N,N-Dihexyl hexanamide: A promising extractant for nuclear fuel reprocessing. Sep. Sci. Technol. 2000, 35, 1603–1617. https://doi.org/10.1081/SS-100100243

Y. Sasaki, Y. Sugo, K. Morita and K. L. Nash. The Effect of Alkyl Substituents on Actinide and Lanthanide Extraction by Diglycolamide Compounds. Solvent Extr. Ion Exch. 2015; 33, 625–641. https://doi.org/10.1080/07366299.2015.1087209

D. Ko, J.S. Lee, H.A. Patel, M.H. Jakobsen, Y. Hwang, C.T. Yavuz, H.C.B. Hansen and H.R. Andersen. Selective removal of heavy metal ions by disulfide linked polymer networks. J. Hazard Mater. 2017; 332, 140-148. https://doi.org/10.1016/j.jhazmat.2017.03.007

B. Saha, M. Iglesias, I. W. Cumming and M. Streat. Sorption of trace heavy metals by thiol containing chelating resins. Solvent Extr. Ion Exch. 2000; 18, 133–167. https://doi.org/10.1080/07366290008934676

R. B. Gujar, P. K. Mohapatra and W. Verboom. Two novel extraction chromatographic resins containing benzene-centered tripodal diglycolamide ligands: Actinide uptake, kinetic modeling and isotherm studies. J. Chromatogr. A. 2019; 1598, 58–66. https://doi.org/10.1016/j.chroma.2019.03.067

E. A. Mowafy, and H. F. Aly. Solvent Extraction and Ion Exchange Synthesis of some N,N,N′,N′‐Tetraalkyl‐3‐Oxa‐Pentane‐ 1,5‐Diamide and their Applications in Solvent Extraction. Solvent Extr. Ion Exch. 2007; 25, 205-224. https://doi.org/10.1080/07366290601169352

P. Deepika, K. N. Sabharwal, T. G. Srinivasan and P. R. Vasudeva Rao. Studies on the use of N,N,N’,N’-Tetra(2-ethylhexyl) diglycolamide (TEHDGA) for actinide partitioning. I: Investigation on third-phase formation and extraction behavior. Solvent Extr. Ion Exch. 2010; 28, 184–201. https://doi.org/10.1080/07366290903565885

M. A. Hashim, S. Mukhopadhyay, J. Narayan and B. Sengupta. Remediation technologies for heavy metal contaminated groundwater. J. Environ. Manage. 2011; 92, 2355–2388. https://doi.org/10.1016/j.jenvman.2011.06.009

M. K. Uddin. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 2017; 308, 438–462. https://doi.org/10.1016/j.cej.2016.09.029

M. Šćiban, B. Radetić, Ž. Kevrešan and M. Klašnja. Adsorption of heavy metals from electroplating wastewater by wood sawdust. Bioresour. Technol. 2007; 98, 402–409. https://doi.org/10.1016/j.biortech.2005.12.014

R. Arora. Adsorption of heavy metals-a review. Mater. Today Proc. 2019; 18, 4745–4750. https://doi.org/10.1016/j.matpr.2019.07.462

R. Li, Y. Li, M. Zhang, Z. Xing, H. Ma and G. Wu. Phosphate-based ultrahigh molecular weight polyethylene fibers for efficient removal of uranium from carbonate solution containing fluoride ions. Molecules 2018; 23, 1245. https://doi.org/10.3390/molecules23061245

J. T. M. Amphlett, M. D. Ogden, R. I. Foster, N. Syna, K. Soldenhoff and C. A. Sharrad. Polyamine functionalised ion exchange resins: Synthesis, characterisation and uranyl uptake. Chem. Eng. J. 2018; 334, 1361–1370. https://doi.org/10.1016/j.cej.2017.11.040

T. V. Druzhinina, Y. A. Kilyushik and D. P. Plotnikov. Sorption of cadmium ions with chemisorbing polymer fibers. Theor. Found. Chem. Eng. 2011; 45, 482–486. https://doi.org/10.1134/S0040579510051082

A. Zhang, E. Kuraoka and M. Kumagai. Impregnation synthesis of a novel macroporous silica-based TODGA polymeric composite and its application in the adsorption of rare earths in nitric acid solution containing diethylenetriaminepentaacetic acid. Eur. Polym. J. 2007; 43, 529–539. https://doi.org/10.1016/j.eurpolymj.2006.10.034

M. Chen, Z. Lia, Y. Gengb, H. Zhaoa, S. Hea, Q. Lia and L. Zhang. Adsorption behavior of thorium on N,N,N′,N′-tetraoctyldiglycolamide (TODGA) impregnated graphene aerogel. Talanta 2018; 181, 311–317. https://doi.org/10.1016/j.talanta.2018.01.020

M. Sajid, M. K. Nazal, Ihsanullah, N. Baig and A. M. Osman. Removal of heavy metals and organic pollutants from water using dendritic polymers based adsorbents: A critical review. Sep. Purif. Technol. 2018; 191, 400–423. https://doi.org/10.1016/j.seppur.2017.09.011

S. A. Ansari, P. K. Mohapatra, A. Leoncini, J. Huskens and W. Verboom. Diglycolamide-functionalized dendrimers : Studies on Americium ( III ) pertraction from radioactive waste. Sep. Purif. Technol. 2017; 187, 110–117. https://doi.org/10.1016/j.seppur.2017.06.028

S. A. Ansari, D.R. Prabhu, R.B. Gujar, A.S. Kanekar, B. Rajeswari, M.J. Kulkarni, M.S. Murali, Y. Babu, V. Natarajan, S. Rajeswari, A. Suresh, R. Manivannan, M.P. Antony, T.G. Srinivasan and V.K. Manchanda. Counter-current extraction of uranium and lanthanides from simulated high-level waste using N,N,N′,N′-tetraoctyl diglycolamide. Sep. Purif. Technol. 2009; 66, 118–124. https://doi.org/10.1016/j.seppur.2008.11.019t

D. Magnusson, B. Christiansen, J. P. Glatz, R. Malmbeck, G. Modolo, D. Serrano‐Purroy and C. Sore. Demonstration of a TODGA based extraction process for the partitioning of minor actinides from a PUREX raffinate part III: Centrifugal contactor run using genuine fuel solution. Solvent Extr. Ion Exch. 2009; 27, 26–35. https://doi.org/10.1080/07366290802544726

R. B. Gujar, S. A. Ansari, D. R. Prabhu, D. R. Raut, P. N. Pathak, A. Sengupta, S. K. Thulasidas, P. K. Mohapatra and V. K. Manchanda. Demonstration of T2EHDGA based process for actinide partitioning part ii: Counter-current extraction studies. Solvent Extr. Ion Exch. 2010; 28, 764–777. https://doi.org/10.1080/07366299.2010.509684

R. B. Gujar, S. A. Ansari, P. K. Mohapatra and V. K. Manchanda. Development of T2EHDGA based process for actinide partitioning. part I: Batch studies for process optimization. Solvent Extr. Ion Exch. 2010; 28, 350–366. https://doi.org/10.1080/07366291003685383

Y. Sasaki and S. Tachimori. Extraction of actinides(III), (IV), (V), (VI), and lanthanides(III) by structurally tailored diamides. Solvent Extr. Ion Exch. 2002; 20, 21–34. https://doi.org/10.1081/SEI-100108822

M. E. Mincher, D. L. Quach, Y. J. Liao, B. J. Mincher and C. M. Wai. The Partitioning of Americium and the Lanthanides Using Tetrabutyldiglycolamide (TBDGA) in Octanol and in Ionic Liquid Solution. Solvent Extr. Ion Exch. 2012; 30, 735–747. https://doi.org/10.1080/07366299.2012.700583

T. Ogata, H. Narita and M. Tanaka. Adsorption mechanism of rare earth elements by adsorbents with diglycolamic acid ligands. Hydrometallurgy 2016; 163, 156–160. https://doi.org/10.1016/j.hydromet.2016.04.002

N. K. Gupta, A. Sengupta, V. G. Rane and R. M. Kadam. Amide-mediated enhancement of sorption efficiency of trivalent f-elements on functionalized carbon nanotube: Evidence of physisorption. Sep. Sci. Technol. 2017; 52, 2049–2061. https://doi.org/10.1080/01496395.2017.1322982

E. R. Bertelsen, N. Kovach, B. Reinhart, B. G. Trewyn, M. R. Antonio and J. Shafer. Multiscale investigations of europium(III) complexation with tetra- n -octyl diglycolamide confined in porous solid supports. CrystEngComm. 2020; 22–24. DOI: 10.1039/D0CE00956C

H. Cui, X. Feng, J. Shia, W. Liu, N. Yan, G. Rao and W. Wang. A facile process for enhanced rare earth elements separation from dilute solutions using N, N-di(2-ethylhexyl)-diglycolamide grafted polymer resin. Sep. Purif. Technol. 2020; 234, 116096. https://doi.org/10.1016/j.seppur.2019.116096

A. S. Suneesh, K. V. Syamala, K. A. Venkatesan, M. P. Antony and P. R. Vasudeva Rao. Diglycolamic acid anchored on polyamine matrix for the mutual separation of Eu(III) and Am(III). Radiochim. Acta. 2016; 104, 11–21. https://doi.org/10.1515/ract-2015-2442

A. S. Suneesh, K. V. Syamala, K. A. Venkatesan, M. P. Antony and P. R. Vasudeva Rao. Diglycolamic acid modified silica gel for the separation of hazardous trivalent metal ions from aqueous solution. J. Colloid Interface Sci. 2015; 438, 55–60. https://doi.org/10.1016/j.jcis.2014.09.076

C. Arrambide, G. Arrachart, S. Berthalon, M. Wehbie and S. Pellet-Rostaing. Extraction and recovery of rare earths by chelating phenolic copolymers bearing diglycolamic acid or diglycolamide moieties. React. Funct. Polym. 2019; 142, 147–158. https://doi.org/10.1016/j.reactfunctpolym.2019.06.013

A. Leoncini, S. A. Ansari, P. K. Mohapatra, A. Sengupta, J. Huskens, and W. Verboom. Diglycolamide-functionalized poly(propylene imine) diaminobutane dendrimers for sequestration of trivalent f-elements: synthesis, extraction and complexation. Dalt. Trans. 2016, 46, 501–508. DOI: 10.1039/C6DT03648A

N. Bernhard and S. Wolfgang. Simple Method for the Esterification of Carboxylic Acids. Angew. Chemie Int. Ed. English.1978; 17, 522–524. https://doi.org/10.1002/anie.197805221

P. K. Mohapatra, S. A. Ansari, M. Iqbal, J. Huskens and W. Verboom. First example of diglycolamide-grafted resins: synthesis, characterization and actinide uptake studies. RSC Adv. 2004; 4, 10412-10419. DOI: 10.1039/C3RA43280G

Z. Zhu, Y. Sasaki, H. Suzuki, S. Suzuki and T. Kimura. Cumulative study on solvent extraction of elements by N , N , N , N -tetraoctyl-3-oxapentanediamide (TODGA) from nitric acid into n –dodecane. Anal. Chim. Acta. 2004; 527, 163–168. https://doi.org/10.1016/j.aca.2004.09.023

Y. Sasaki, Z. X. Zhu, Y. Sugo and T. Kimura. Extraction of various metal ions from nitric acid to n-dodecane by diglycolamide (DGA) compounds. J. Nucl. Sci. Technol. 2007; 44, 405–409. https://doi.org/10.1080/18811248.2007.9711301

Published
2022-04-14
How to Cite
[1]
Rajput, S., Muley, S., Kulkarni, K., Ansari, S.A., Mohapatra, P.K., Kapdi, A.R. and Patwardhan, A.V. 2022. Covalent grafting of Diglycolamide functionalities over Merrifield resin for the uptake of trivalent f-block metal ions from acidic aqueous feed. IIChE-CHEMCON. (Apr. 2022). DOI:https://doi.org/10.36375/prepare_u.iiche.a370.
Section
Articles