Optimization of chemical pre-treatment methods for production of bioethanol from dry fallen Neem leaves
Abstract
During the recent years ethanol derived from biomass, popularly known as bioethanol is grabbing attention due to incessant spike in petroleum prices. Ethanol derived from Corn and sugar are the most popular substitute for ethanol. However, the feedstock is not sufficient and poses the menace food versus fuel. Hence cheaper and inedible sources need to be investigated for the production of bioethanol. In the current study lignocellulosic biomass derived from waste, dried neem leaves was used as a source for bioethanol production. The powdered leaves were pre-treated with conc. H2SO4 followed by fermentation with yeast S. cereviciae.On completion of the fermentation process the broths obtained were distilled to obtain bioethanol. The effect of pre-treatment on the bioethanol yield was studied by varying the concentrations of H2SO4 as 0.5 N, 1 N, 2 N, 3 N and 5 N, temperature as100°C,120°Cand 140°C and pre-treatment time as 15, 30 and 60 minutes. H2SO4 conc. of 1N, temperature 120° C and pre-treatment time of 60min was found to be the most optimum condition for liberating reducing sugars from neem leaves under the present experimental conditions. The FTIR studies of the neem leaves before and after pre-treatment showed breakdown in lignocellulosic biomass structure due to pre-treatment. The fermentation of pre-treated solution produced at optimum conditions resulted 24.14 g/L ethanol after 5 days of fermentation.
References
(1) Periyasamy, S.; Venkatachalam, S.; Ramasamy, S.; Srinivasan, V. Modern Applied Science; 2009, 3(8), 32-37.
(2) Moodley, P.; Kana, E.B.G. Bitech. Reports; 2019, 24https://doi.org/10.1016/j.btre.2019.e00329.
(3) Sert, B.S.; Inan, B.; Ozcimen, D. Acta Chim. Slov; 2018, 65, 160-165.
(4) Byadgi, S.A.; Kalburgi, P.B. Procedia Environmental Sciences; 2016, 35, 555-562.
(5) Branco, R.H.R.; Serafim, L.S.; Xavier, A.M.R.B. Fermentation; 2019, 5 (4) doi:10.3390/fermentation50100042018.
Anu, A. Kumar, K.K. Jain, B. Singh, Renewable Energy, 156 (2020), 1233-1243.
(7) Loow, Y.; Wu, T.Y.;. Jahim, M. J.; Mohammad, A.W.; Teoh, W.H. Cellulose; 2016, 10.1007/s10570-016-0936-8.
(8) Dussan, K.J.; Elisangela, D.D.V.; Moraes, J.C.; Arruda, P.V.; Felipe, M.G.A. Chem. Eng. Trans., 2014, 38, 433-438.
(9) Hanim, S.S.; Halim, N.A.A. 2018, http://dx.doi.org/10.5772/intechopen.81656.
(10) Morales, M.; Arvesen, A.; Cherubini, F. Bioresource Technology; 2021, 328, 1-15.
(11) Deng, J.; Zhu, X.; Chen, P.; He, B.; Tang, S.; Zhao, W.; Li, X.; Zhang, R.; Lv, Z..; Kang, H.; Yu, L.; Peng, L.; Sustainable Energy & Fuels; 2020, 4, 607-618.
(12) A. A. Awoyale, D. Lokhat, Scientific Reports,11(2021)557.
(13) Lugani, Y.; Rai, R.; Prabhu, A.A.; Maan, P.; Hans, M.; Kumar, V.; Kumar, S.; Chandel, A.K.; Sengar, R.S. Biofuel Research Journal; 2020, 28, 1267-1295.
(14) S.P. Das, A. Ghosh, A. Gupta, A. Goyal, D. Das, BioMed Research International; 2013, DOI: 10.1155/2013/386063.
(15) Kumar, P.; Barrett, D.M.; Delwiche, M.J.; Stroeve, P. Ind. Eng. Chem. Res.; 2009, 48, 3713-3729.
(16) El-Mekkawi, S.A.;. Abdo, S.M.; Samhan, F.A.; Ali, G.H. Bulletin of the National Research Centre; 2019, 43 (164); https://doi.org/10.1186/s42269-019-0205-8.
(17) Jutakridsada, P.; Saengprachatanarug, K.; Kasemsiri, P.; Hiziroglu, S.; Kamwilaisak, K.; Chindaprasirt, P. Waste and Biomass Valorization; 2019, 10, 817-825.
(18) Mosier, N. S.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y. Y.; Holtzapple, M.; Ladisch, M. R.. Bioresource Technology; 2005, 96, 673–686.
(19) Esteghlalian, A.; Hashimoto, A. G.; Fenske, J. J.; Penner, M. H.. Bioresource Technology,; 1997, 59, 129–136.
(20) Riansa-ngawong, W.;Prasertsan, P. Carbohydr. Res.; 2011, 346(1), 103–110.