Synthesis of multifunctional Ag NPs by using different plants
Abstract
Green synthesis of metal nanoparticles by using plant extracts is an environment-friendly, cost-effective and sustainable method. In our experiment, plant extracts of Livistona jekinsiana and Lasia spinosa were used in the synthesis of Ag NPs for the first time. Due to the high antioxidants contained and the traditional therapeutic applications of the mentioned plants, they were selected as ideal reducing and capping agents in the synthesis of Ag NPs. The synthesis of the Ag NPs was preliminarily confirmed by UV- Visible spectra of the synthesized NPs. The Fourier transform infrared (FTIR) spectra indicated the presence of -OH, C=C, -CN, -CH, etc. functional groups of phytocompounds on the surface of NPs. XRD patterns of Ag NPs revealed the FCC structure of the Ag NPs. FESEM and HRTEM micrographs determined the spherical shape and uniform size of the Ag NPs. EDX analysis confirmed the purity of Ag NPs. Higher negative values of zeta potential revealed the higher stability of the NPs. The NPs exhibited potential antimicrobial activity against Gram-positive bacteria Staphylococcus aureus (ATCC 11682), Gram-negative bacteria Escherichia coli (ATCC 11229), Pseudomonas aeruginosa (MTCC 2582), and fungi Candida albicans (MTCC 3017). Ag NPs also showed antioxidant activity, anti-inflammatory activity, and drug delivery ability with good results. The photocatalytic activity of Ag NPs was examined by the degradation of nitro compounds in the presence of sunlight. The kinetics of the photodegradation and reusability of the Ag NPs were also studied.
References
(1)Manik, U. P.; Nande, A.; Raut, S.; Dhoble, S. J. Green synthesis of silver nanoparticles using plant leaf extraction of Artocarpus heterophylus and Azadirachta indica. Result. Mater. 2020, 6, 100086.
(2)Ahmed, S.; Ahmed, M.; Swami, B. L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016,7, 17–28.
(3)Santhosh, A.; Theertha, V.; Prakash, P.; Chandran, S. S. From waste to a value added product: Green synthesis of silver nanoparticles from onion peels together with its diverse applications. Mater. Today: Proc. 2021, 46, 4460–4463.
(4)Jalilian, F.; Chahardoli, A.; Sadrjavadi, K.; Fattahi, A.; Shokoohinia, Y. Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: Characterization, antioxidant activities, antibacterial and cytotoxicity effects. Adv. Powder Technol. 2020, 31, 1323-1332.
(5)Yuan, Z.; Yang, H.; Xu, P.; Li, C.; Jian, J.; Zeng, J.; Zeng, L.; Sui, Y.; Zhou, H. Facile in situ synthesis of silver nanocomposites based on cellulosic paper for photocatalytic applications. Environ. Sci. Pollut. Res. 2021, 28, 6411-6421.
(6)Baruah, D.; Yadav, R. N. S.; Yadav, A.; Das, A. M. Alpinia nigra fruits mediated synthesis of silver nanoparticles and their antimicrobial and photocatalytic activities. J. Photochem. Photobiol. B Biol. 2019, 201, 111649.
(7)Baruah, R.; Yadav, A.; Das, A.M. Evaluation of the multifunctional activity of silver bionanocomposites in environmental remediation and inhibition of the growth of multidrug-resistant pathogens† New J. Chem., 2022, 46, 10128-10153.
(8)Chandhirasekar, K.; Thendralmanikandan, A.; Thangavelu, P.; Nguyen, B. S.; Nguyen, T. A. Sivashanmugan, K.; Nareshkumar, A.; Nguyen, V. H. Plant-extract-assisted green synthesis and its larvicidal activities of silver nanoparticles using leaf extract of Citrus medica, Tagetes lemmonii, and Tarenna asiatica. Mater. Lett. 2021, 287, 129265.
(9)Abdullah, H. S. T. S. H.; Asseri, S. N. A. R. M.; Mohamad, W. N. K. W.; Kan, S. Y.; Azmi, A. A.; Julius, F. S. Y.; Chia, P. W. Green synthesis, characterization and applications of silver nanoparticle mediated by the aqueous extract of red onion peel☆ Environ. Pollut. 2021, 271, 116295.
(10)Singh, R. K.; Srivastava, R. C.; Mukherjee, T. K. Toko-Patta (Livistona jenkinsiana Griff): Adi community and conservation of culturally important endangered tree species in eastern Himalaya. Indian J. Tradit. Knowl. 2010, 9, 231-241.
(11)Brahma, J.; Chakravarty, S.; Rethy, P. Qualitative Estimation of the Presence of Bioactive and Nutritional Compound in Lasia Spinosa: An Important Vegetable Plant used by the Bodos of Kokrajhar District. Int. J. Chemtech Res. 2014, 6, 1405-1412.
(12) Albukhari, S. M.; Ismail, M.; Akhtar, K.; Danish, E. Y. Catalytic reduction of nitrophenols and dyes using silver nanoparticles @ cellulose polymer paper for the resolution of waste water treatment challenges. Colloids Surf. A Physicochem. Eng. Asp. 2019, 577, 548-561.
(13) Yuan, Z.; Yang, H.; Xu, P.; Li, C.; Jian, J.; Zeng, J.; Zeng, L.; Sui, Y.; Zhou, H. Facile in situ synthesis of silver nanocomposites based on cellulosic paper for photocatalytic applications. Environ. Sci. Pollut. Res. 2021, 28, 6411-6421.
(14)Lee, S. J.; Begildayeva, T.; Yeon, S.; Naik, S. S.; Ryu, H.; Kim, T. H.; Choi, M. Y. Eco-friendly synthesis of lignin mediated silver nanoparticles as a selective sensor and their catalytic removal of aromatic toxic nitro compounds☆ Environ. Pollut. 2021, 269, 116174.
(15)Zhu, D.; Long, L.; Sun, J.; Wan, H.; Zheng, S. Highly active and selective catalytic hydrogenation of p-chloronitrobenzene to p-chloroaniline on Pt@Cu/TiO2. Appl. Surf. Sci. 2020, 504, 144329.
(16)Karthik, R.; Govindasamy, M.; Chen, S. M.; Cheng, Y. H.; Muthukrishnan, P.; Padmavathy, S.; Elangovan, A. Biosynthesis of silver nanoparticles by using Camellia japonica leaf extract for the electrocatalytic reduction of nitrobenzene and photocatalytic degradation of Eosin-Y. J. Photochem. Photobiol. B Biol. 2017, 170, 164-172.
(17)Cynthia, G.; Swarnavalli, J.; Dinakaran, S.; Krishnaveni, S.; Bhalerao, G. M. Rapid one pot synthesis of Ag/ZnO nanoflowers for photocatalytic degradation of nitrobenzene. Mater. Sci. Eng. B 2019, 247, 114376.
(18)Dutta, T.; Ghosh, N. N.; Das, M.; Adhikary, R.; Mandal, V.; Chattopadhyay, A. P. Green synthesis of antibacterial and antifungal silver nanoparticles using Citrus limetta peel extract: Experimental and theoretical studies. J. Environ. Chem. Eng. 2020, 8, 104019.
(19) Shah, Z.; Gul, T.; Khan, S. A.; Shaheen, K.; Anwar, Y.; Suo, H.; Ismail, M.; Alghamdi, K. M.; Salman, S.M. Synthesis of high surface area AgNPs from Dodonaea viscosa plant for the removal of pathogenic microbes and persistent organic pollutants. Mater. Sci. Eng. B 2021, 263, 114770.
(20)Baruah, R.; Yadav, A.; Das, A. M. Livistona jekinsiana fabricated ZnO nanoparticles and their detrimental effect towards anthropogenic organic pollutants and human pathogenic bacteria. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 251, 119459.
(21)Ugwoke, E.; Aisida, S. O.; Mirbahar, A. A.; Arshad, M.; Ahmad, I.; Zhao, T., Ezema, F. I. Concentration induced properties of silver nanoparticles and their antibacterial study. Surf. Interfaces 2020, 18, 100419.
(22)Kumar, V.; Singh, S.; Srivastava, B.; Bhadouria, R.; Singh, R. Green synthesis of silver nanoparticles using leaf extract of Holoptelea integrifolia and preliminary investigation of its antioxidant, anti-inflammatory, antidiabetic and antibacterial activities. J. Environ. Chem. Eng. 2019, 7, 103094.