Theoretical Studies on the Charge Carrier Mobility and Lattice Thermal Conductivity of Rubidium-based Triiodides Using First Principle Calculation

  • Anupriya Nyayban National Institute of Technology Silchar, Assam, 788010, India
  • Dr. Subhasis Panda National Institute of Technology Silchar, Assam, 788010, India
  • Dr. Avijit Chowdhury S.N. Bose National Centre for Basic Sciences
Keywords: Perovskites, Deformation potential theory, Slack’s model

Abstract

The spectacular hike in the photo conversion efficiency and the light-harvesting ability of Perovskites-based solar cells have shown great interest among the scientific community. However, the limited knowledge about the charge carrier transport mechanisms and lattice thermal conductivity of the Perovskites significantly affects the device performances, including the lifetime and stability of the sensitizer. This work reports the carrier mobility and lattice thermal conductivity of the orthorhombic RbMI3 (where M=Sn and Ge), using the deformation potential theory and Slack’s model, respectively. The mechanical stability has been confirmed for both the structures, and the highest shear anisotropy is observed for RbSnI3. The mobility of the electrons is higher than holes, and the highest mobility is observed along (010) direction for both the structures at low temperatures. Ultra-low-lattice thermal conductivity of 0.237 and 0.402 W/m.K have been observed at the room temperature for RbSnI3 and RbGeI3, respectively, which are consistent with the available experimental values for all inorganic perovskites. 

Author Biographies

Anupriya Nyayban, National Institute of Technology Silchar, Assam, 788010, India

Department of Physics

Dr. Subhasis Panda, National Institute of Technology Silchar, Assam, 788010, India

Department of Physics

Dr. Avijit Chowdhury, S.N. Bose National Centre for Basic Sciences

Department of Condensed Matter Physics and Material Sciences

References

(1) A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible light sensitizers for photovoltaic cells, Journal of the American Chemical Society 131, 6050 (2009).

(2) N. R. E. L. (NREL), Best research-cell efficiencies, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20191106.pdf (2020).

(3) W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, et al., Iodide management in formamidinium-lead-halide{based perovskite layers for efficient solar cells, Science 356, 1376 (2017).

(4) W. A. Dunlap-Shohl, Y. Zhou, N. P. Padture, and D. B. Mitzi, Synthetic approaches for halide perovskite thin films, Chemical reviews 119, 3193 (2018).

(5) X. Meng, X. Cui, M. Rager, S. Zhang, Z. Wang, J. Yu, Y. W. Harn, Z. Kang, B. K. Wagner, Y. Liu, et al., Cascade charge transfer enabled by incorporating edge-enriched graphene nanoribbons for mesostructured perovskite solar cells with enhanced performance, Nano Energy 52, 123 (2018).

(6) H. Dong, J. Xi, L. Zuo, J. Li, Y. Yang, D. Wang, Y. Yu, L. Ma, C. Ran, W. Gao, et al., Conjugated molecules bridge": Functional ligand toward highly efficient and long-term stable perovskite solar cell, Advanced Functional Materials 29, 1808119 (2019).

(7) J. Y. Kim, J.-W. Lee, H. S. Jung, H. Shin, and N.-G. Park, High-efficiency perovskite solar cells, Chemical Reviews 120, 7867 (2020).

(8) H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Scientific reports 2, 1 (2012).

(9) O. H. Perovskites, Efficient hybrid solar cells based on meso-superstructured, Phys. Rev. Lett 92, 210403 (2004).

(10) J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, 6.5% efficient perovskite quantum dot-sensitized solar cell, Nanoscale 3, 4088 (2011).

(11) J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-j. Kim, A. Sarkar, M. K. Nazeeruddin, et al., Efficient inorganic{organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, Nature photonics 7, 486 (2013).

(12) M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Ho-Baillie, Solar cell efficiency tables (version 52), Progress in Photovoltaics: Research and Applications 26, 427 (2018).

(13) M. A. Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, and X. Hao, Solar cell efficiency tables (version 58), Progress in Photovoltaics: Research and Applications 29, 657 (2021).

(14) J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gr•atzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature 499, 316 (2013).

(15) N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi, and N.-G. Park, Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead (ii) iodide, Journal of the American Chemical Society 137, 8696 (2015).

(16) D.-Y. Son, J.-W. Lee, Y. J. Choi, I.-H. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim, et al., Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells, Nature Energy 1, 1 (2016).

(17) P. Wang, X. Zhang, Y. Zhou, Q. Jiang, Q. Ye, Z. Chu, X. Li, X. Yang, Z. Yin, and J. You, Solvent-controlled growth of inorganic perovskite fillms in dry environment for efficient and stable solar cells, Nature communications 9, 1 (2018).

(18) N. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S. M. Zakeeruddin, and M. Gr•atzel, Perovskite solar cells with cuscn hole extraction layers yield stabilized efficiencies greater than 20%, Science 358, 768 (2017).

(19) M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, et al., Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, Science 354, 206 (2016).

(20) W. Zhou, Y. Zhao, X. Zhou, R. Fu, Q. Li, Y. Zhao, K. Liu, D. Yu, and Q. Zhao, Light independent ionic transport in inorganic perovskite and ultrastable Cs-based perovskite solar cells, The journal of physical chemistry letters 8, 4122 (2017).

(21) W. Ke, C. C. Stoumpos, and M. G. Kanatzidis, unleaded" perovskites: status quo and future prospects of tin-based perovskite solar cells, Advanced Materials 31, 1803230 (2019).

(22) F. Giustino and H. J. Snaith, Toward lead-free perovskite solar cells, ACS Energy Letters 1, 1233 (2016).

(23) A. Nyayban, S. Panda, and A. Chowdhury, Structural, electronic and optical properties of lead free rb based triiodide for photovoltaic application: an ab initio study, 33, 375702 (2021).

(24) P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, J. Luitz, et al., wien2k, An augmented plane wave+ local orbitals program for calculating crystal properties (2001).

(25) J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters 77, 3865 (1996).

(26) M. Jamal, M. Bilal, I. Ahmad, and S. Jalali-Asadabadi, Irelast package, Journal of Alloys and Compounds 735, 569 (2018).

(27) W. Voigt, Lehrbuch der kristallphysik (teubner, stuttgart, 1928).

(28) A. Reu_, Berechnung der ie_grenze von mischkristallen auf grund der plastizit•atsbedingung f•ur einkristalle., ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift f•ur Angewandte Mathematik und Mechanik 9, 49 (1929).

(29) R. Hill, The elastic behaviour of a crystalline aggregate, Proceedings of the Physical Society. Section A 65, 349 (1952).

(30) Q. Wei, M. Zhang, L. Guo, H. Yan, X. Zhu, Z. Lin, and P. Guo, Ab initio studies of novel carbon nitride phase c2n2 (ch2), Chemical Physics 415, 36 (2013).

(31) J. Bardeen and W. Shockley, Deformation potentials and mobilities in non-polar crystals, Physical review 80, 72 (1950).

(32) G. Sin'Ko and N. Smirnov, Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp al crystals under pressure, Journal of Physics: Condensed Matter 14, 6989 (2002).

(33) P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to tisi 2, Journal of Applied Physics 84, 4891 (1998).

(34) C. M. Kube, Elastic anisotropy of crystals, AIP Advances 6, 095209 (2016).

((35) O. Gomis, R. Vilaplana, F. J. Manj_on, D. Santamaria-Perez, D. Errandonea, E. Perez, Gonzalez, J. L_opez-Solano, P. Rodr__guez-Hern_andez, A. Mu~noz, I. Tiginyanu, et al., Highpressure study of the structural and elastic properties of defect-chalcopyrite hgga2se4, Journal of Applied Physics 113, 073510 (2013).

(36) G. A. Slack, Nonmetallic crystals with high thermal conductivity, Journal of Physics and Chemistry of Solids 34, 321 (1973).

(37) W. Lee, H. Li, A. B.Wong, D. Zhang, M. Lai, Y. Yu, Q. Kong, E. Lin, J. J. Urban, J. C. Grossman, et al., Ultralow thermal conductivity in all-inorganic halide perovskites, Proceedings of the National Academy of Sciences 114, 8693 (2017).

Published
2022-04-14
How to Cite
[1]
Nyayban, A., Panda, D.S. and Chowdhury, D.A. 2022. Theoretical Studies on the Charge Carrier Mobility and Lattice Thermal Conductivity of Rubidium-based Triiodides Using First Principle Calculation . IIChE-CHEMCON. (Apr. 2022). DOI:https://doi.org/10.36375/prepare_u.iiche.a383.
Section
Articles