Emerging Techniques of Carbon Capture and Storage (CCS): A Review
Abstract
The typical process of Carbon Capture and Storage (CCS) mainly involves the capture of carbon dioxide (CO2) emissions from various industrial processes or from the flue or stack gas which is generated as a result of burning of fossil fuels. Therefore, the main processes of Carbon Capture and Storage (CCS) basically categorized as post-combustion carbon capture, pre-combustion carbon capture and oxy-fuel combustion systems. The first method is specially used in various steel and power plants whereas the pre-combustion carbon capture process is mainly employed in different industrial processes. Apart from these techniques, Direct Air Capture and Storage (DAC) method is also used in order to capture CO2 directly from ambient air. The main characteristics of the CCS process includes capturing CO2 from the point sources of where it is been produced such as, smokestacks of iron and steel factories and then transporting the captured CO2 to the storage site for subsequent sequestration. The captured CO2 is firstly compressed to a liquid form and then it is being transported via ship or in a pipeline to store beneath the ground where it is geologically sequestrated by injecting it into porous rock formations in geological basins.
References
2. Klein T, Anderegg W (2021). A vast increase in heat exposure in the 21st century is driven by global warming and urban population growth. Sustain. Cities Soc. 73: 103098. https://doi.org/10.1016/j.scs.2021.103098.
3. McQueen N, Kelemen P, Dipple G, Renforth P, Wilcox J (2020) Ambient weathering of magnesium oxide for CO2 removal from air. Nat. Commun. 11 (1): 3299. https://doi.org/10.1038/s41467-020-16510-3.
4. Rosa L, Sanchez DL, Realmonte G, Baldocchi D, D’Odorico P (2021) The water footprint of carbon capture and storage technologies. Renew Sustain Energy Rev. 138:110511. https://doi.org/10.1016/j.rser.2020.110511.
5. Realmonte G, Drouet L, Gambhir A. et al. (2019) An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nat Commun 10:3277. https://doi.org/10.1038/s41467-019-10842-5.
6. Rode D, Anderson J, Zhai H, Fischbeck P (2022) Many hands make light work: widening the U.S. path forward from COP26. Environ. Sci. Technol. 56:10.https://doi.org/10.1021/acs.est.1c07965.
7. Noothout P, Wiersma F, Hurtado O, Macdonald D, Kemper J, van Alphen K (2014) CO2 pipeline infrastructure – lessons learnt. Energy Proc. 63:2481–92. https://doi.org/10.1016/j.egypro.2014.11.271.
8. Shu DY, Deutz S, Winter BA, Baumgärtner N, Leenders L, Bardow A (2023) Renewable Sustain. Energy Rev.178:113246. https://doi.org/10.1016/j.rser.2023.113246.
9. Adu E, Zhang Y, Liu D (2019) Current situation of carbon dioxide capture, storage, and enhanced oil recovery in the oil and gas industry. Can J Chem Eng.97:1048–76. https://doi.org/10.1002/cjce.23393.
10. Khatiwala S, Primeau F, Hall T (2009) Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature.462:346–9. https://doi.org/10.1038/nature08526.
11. Liang J, Lupien R, Xie H, Vachula R, Stevenson M, Han B, Lin Q, He Y, Wang M, Liang P, Huang Y (2021) Lake ecosystem on the Qinghai–Tibetan Plateau severely altered by climatic warming and human activity. Palaeogeogr. Palaeoclimatol. Palaeoecol. 576:110509. https://doi.org/10.1016/j.palaeo.
12. Luderer G, Vrontisi Z, Bertram C, Edelenbosch OY, Pietzcker RC, Rogelj Jet al (2018) Residual fossil CO2 emissions in 1.5–2 ◦C pathways. Nat Clim Chang.8(7):626–633.10.1038/s41558-018-0198-6.
13. Al-Shargabi M, Davoodi S, Wood DA, Rukavishnikov VS, Minaev KM (2022) Carbon Dioxide Applications for Enhanced Oil Recovery Assisted by Nanoparticles: Recent Developments. ACS Omega. 7(12): 9984–94. https://doi.org/10.1021/acsomega.1c07123.
14. Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, et al. (2018) Carbon capture and storage (CCS): the way forward. Energy Environ Sci; 11(5):1062–176. DOI: 10.1039/c7ee02342a rsc.li/ees.
15. Dziejarski B, Krzyzynska R, Andersson K (2023) Current status of carbon capture, utilization, and storage technologies in the global economy: a survey of technical assessment. Fuel. 342:127776. https://doi.org/10.1016/j.fuel.2023.127776.
16. Ivanov Y, Pyatnichko O, Zhuk H, Onopa L, Soltanibereshne M. 2017. Extraction of carbon dioxide from gas mixtures with amines absorbing process. Energy Procedia.128:240–247. 10.1016/j.egypro.2017.09.062.
17. Erans M, Sanz-Pérez ES, Hanak DP, Clulow Z, Reiner DM, Mutch GA (2022) Direct air capture: process technology, techno-economic and socio-political challenges. Energy Environ Sci. 15:1360-1405. DOI: 10.1039/d1ee03523a rsc.li/ees
18. Chao C, Deng Y, Dewil R, Baeyens J, Fan X (2021) Post-combustion carbon capture. Renew Sustain Energy Rev. 138:110490. https://doi.org/10.1016/j.rser.2020.110490.
19. Borhani TN, Wang M (2019) Role of solvents in CO2 capture processes: The review of selection and design methods. Renewable Sustain. Energy Reviews. 114:109299. https://doi.org/10.1016/j.rser.2019.109299.
20. Jayarathna SA, Lie B, Melaaen MC (2013) Amine based CO2 capture plant: Dynamic modeling and simulations. Int J Greenhouse Gas Control. 14:282–90. https://doi.org/10.1016/j.ijggc.2013.01.028.
21. Mukherjee A, Okolie JA, Abdelrasoul A, Niu C, Dalai AK (2019) Review of post combustion carbon dioxide capture technologies using activated carbon. J Environ Sci. 83:46–63. https://doi.org/10.1016/j.jes.2019.03.014
22. Castro-Mu˜noz R, Zamidi Ahmad M, Malankowska M, Coronas J (2022) A new relevant membrane application: CO2 direct air capture (DAC). Chem Eng J. 446:137047. https://doi.org/10.1016/j.cej.2022.137047.
23. Ahmad AL, Sunarti AR, Lee KT, Fernando WJN (2010) CO2 removal using membrane gas absorption. Int. J. Greenhouse Gas Contol. 4(3):495-498. https://doi.org/10.1016/j.ijggc.2009.12.003.
24. Aghel B, Janati S, Wongwises S, Shadloo MS (2022) Review on CO2 capture by blended amine solutions. 119: 103715. Int. J. Greenhouse Gas Control. https://doi.org/10.1016/j.ijggc.2022.103715.
25. Lu H, Ma X, Huang K, Fu L, Azimi M (2020) Carbon dioxide transport via pipelines: a systematic review. J Clean Prod.266:121994. https://doi.org/10.1016/j.jclepro.2020.121994.
26. Aminu MD, Nabavi SA, Rochelle CA, Manovic V (2017) A review of developments in carbon dioxide storage. Appl Energy. 208:1389–419. https://doi.org/10.1016/j.apenergy.2017.09.015.
27. Ajayi T, Gomes JS, Bera A (2019) A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches. Pet Sci.16(5):1028–63.DOI:10.1007/s12182-019-0340-8.
28. Feng D, Li X, Wang X, Li J, Zhang X (2018) Capillary filling under nanoconfinement: The relationship between effective viscosity and water-wall interactions. Int J Heat Mass Transf. 118:900–910. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.049.
29. Wei N, Li X, Liu S, Lu S, Jiao Z (2021) A strategic framework for commercialization of carbon capture, geological utilization, and storage technology in China. Int J Greenhouse Gas Control. 110:103420. https://doi.org/10.1016/j.ijggc.2021.103420.
30. Connelly DP, Bull JM, Flohr A, Schaap A, Koopmans D, Blackford JC, et al. (2022) Assuring the integrity of offshore carbon dioxide storage. Renew Sustain Energy Rev.166:112670. https://doi.org/10.1016/j.rser.2022.112670.
31. Roussanaly S, Hognes ES, Jakobsen JP (2013) Multi-criteria analysis of two CO2 transport technologies. Energy Proc 2013;37:2981–8. https://doi.org/10.1016/j.egypro.2013.06.184.
32. Zhao N, Xu T, Wang K, Tian H, Wang F (2018) Experimental study of physical-chemical properties modification of coal after CO2 sequestration in deep unmineable coal seams. Greenhouse Gases Sci Technol. 18:8(3): 510–28. https://doi.org/10.1002/ghg.1759.
33. Lamberts-Van Assche H, Compernolle T (2022) Using real options thinking to value investment flexibility in carbon capture and utilization projects: a review. Sustain. 14:2098. https://doi.org/10.3390/su14042098.
34. Schaffer S, Pr¨oll T, Al Afif R, Pfeifer C (2019) A mass- and energy balance-based process modelling study for the pyrolysis of cotton stalks with char utilization for sustainable soil enhancement and carbon storage. Biomass Bioenergy.120:281–90. https://doi.org/10.1016/j.biombioe.2018.11.019.