Biopolymer Supported ZnO Bionanocomposites Film and Their Application in Environmental Remediation and Controlling of Contagious Diseases

  • REBIKA BARUAH CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
  • KARISHMA TALUKDAR CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India | Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
  • VEKUNO CUKHAMU CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
  • ARCHANA MONI DAS CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India | Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
Keywords: Bionanocomposites, ZnO nanoparticles, Cellulose, Chitosan, Thin Film

Abstract

Bionanocomposites are innovative sustainable materials that possess multifunctional attractive nature in various fields. Cellulose/chitosan/ ZnO bionanocomposites (CCZBC) films were synthesized by utilizing water extracts of Livistona jekinsiana as reducing as well as capping agents to synthesize ZnO NPs impregnated chitosan/cellulose bionanocomposites thin film. X-ray diffraction pattern of CCZBCC revealed the wurtzite structure of ZnO nanoparticles. Fourier transform infrared spectroscopy revealed the presence of plant extracts, cellulose, and chitosan in CCZBC. Scanning Electron Microscope (SEM) images provided information about the morphology of the surface of CCZBC. The elemental composition of CCZBC was determined by Energy Dispersive X-ray (EDX) analysis. Transmission Electron Microscope (TEM) provided the shape and size of CCZBC. CCZBC possessed efficient photocatalytic degradative properties in the remediation of two anthropogenic dyes, Eosin blue and Bromocresol green, potential antimicrobial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus)., and antioxidant property in DPPH assay. Therefore, the chitosan/cellulose/Ag NPs bionanocomposites film can be considered an efficient material for biomedical and environmental applications.

References

1.Khan, S. A., Noreen, F., Kanwalc, S., Iqbal, A., & Hussain, G. (2028). Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Materials Science & Engineering: C, 82, 46–59. https://doi.org/10.1016/j.msec.2017.08.071
2.Ahmed, S., Chaudhry, S. A., & Ikram, S. (2017). A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry. Journal of Photochemistry and Photobiology B: Biology, 166, 272-284. https://doi.org/10.1016/j.jphotobiol.2016.12.011
3.Baruah, R., Yadav, A., & Das, A. M. (2021). Livistona jekinsiana fabricated ZnO nanoparticles and their detrimental effect towards anthropogenic organic pollutants and human pathogenic bacteria. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 251, 119459. https://doi.org/10.1016/j.saa.2021.119459
4.Baruah, R., Yadav, A., & Das, A. M. (2022). Evaluation of the multifunctional activity of silver bionanocomposites in environmental remediation and inhibition of the growth of multidrug-resistant pathogens†. New Journal of Chemistry, 46, 10128-10153. 10.1039/D1NJ06198D
5.Vardhan, K. H., Kumar, P. S., & Panda, R. C. (2019). A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids, 290, 111197. https://doi.org/10.1016/j.molliq.2019.111197
6. Rashid, T., Sherf, F., Hazafa, A., Hashmi, R. Q., Zafar, A., Rasheed, T., & Hussain, S. (2021). Design and feasibility study of novel paraboloid graphite based microbial fuel cell for bioelectrogenesis and pharmaceutical wastewater treatment. Journal of Environmental Chemical Engineering, 9 (1), 104502. https://doi.org/10.1016/j.jece.2020.104502
7.Liu, Y., Zhang, Q., Xu, M., Yuan, H., Chen, Y., Zhang, J., Luo, K., Zhang, J., & You, B. (2019). Novel and efficient synthesis of Ag-ZnO nanoparticles for the sunlight-induced photocatalytic degradation. Applied Surface Science, 476, 632–640. https://doi.org/10.1016/j.apsusc.2019.01.137
8.Goswami, M., Baruah, D., & Das, A. M. (2018). Green synthesis of silver nanoparticles supported on cellulose and their catalytic application in the scavenging of organic dyes. New Journal of Chemistry, 42, 10868-10878.  10.1039/C8NJ00526E
9.Baruah, D., Yadav, R.N.S., Yadav, A., & Das, A.M. (2019). Alpinia nigra fruits mediated synthesis of silver nanoparticles and their antimicrobial and photocatalytic activities. Journal of Photochemistry & Photobiology B: Biology, 201, 111649. https://doi.org/10.1016/j.jphotobiol.2019.111649
10.Goswami, M. & Das, A. M. (2019). Synthesis and Characterization of a Biodegradable
Cellulose Acetate-Montmorillonite Composite for Effective Adsorption of Eosin Y. Carbohydrate Polymers, 206, 863-872. https://doi.org/10.1016/j.carbpol.2018.11.040
11.Mishra, P., Singh, Y. P., Nagaswarupa, H. P., Sharma, S. C., Vidya, Y. S., Prashantha, S. C., Nagabhushana, H., Anantharaju, K. S., Sharma, S., & Renuka, L. (2016). Caralluma fimbriata extract induced green synthesis, structural, optical and photocatalytic properties of ZnO nanostructure modified with Gd. Journal of Alloys and Compounds, 685, 656-669. https://doi.org/10.1016/j.jallcom.2016.05.044
12.Matinise, N., Fuku, X. G., Kaviyarasu, K., Mayedwa, N., & Maaza, M. (2017). ZnO nanoparticles via Moringa oleifera green synthesis: physical properties & mechanism of formation. Applied Surface Science, 406, 339-347. https://doi.org/10.1016/j.apsusc.2017.01.219
13.Baruah, R., Goswami, M., Das, A. M., Nath, D., & Talukdar, K. (2023). Multifunctional ZnO Bionanocomposites in the Treatment of Polluted Water and Controlling of Multi-drug Resistant Bacteria. Journal of Molecular Structure, 1283, 35251. https://doi.org/10.1016/j.molstruc.2023.135251
14.Yadav, L. S. R., Raghavendra, M., Manjunath, K., & Nagaraju, G. (2018). Photocatalytic, biodiesel, electrochemical sensing properties and formylation reactions of ZnO nanoparticles synthesized via eco-friendly green synthesis method. Journal of Materials Science: Materials in Electronics, 29, 8747-8759. https://doi.org/10.1007/s10854-018-8891-9
15.Kumar, K. H. S., Dhananjaya, N., & Yadav, L. S. R. (2018). E. Tirucalli plant latex mediated green combustion synthesis of ZnO nanoparticles: structure, photoluminescence and photo-catalytic activities. Journal of Science: Advanced Materials and Devices, 3(3), 303-309. https://doi.org/10.1016/j.jsamd.2018.07.005
16.Stan, M., Popa, A., Toloman, D., Dehelean, A., Lung, I., & Katona, G. (2015). Enhanced Photocatalytic Degradation Properties of Zinc Oxide Nanoparticles Synthesized by Using Plant Extracts. Materials Science in Semiconductor Processing, 39, 23-29. https://doi.org/10.1016/j.mssp.2015.04.038
17.Varadavenkatesan, T., Lyubchik, E., Pai, S., Pugazhendhi, A., Vinayagam, R., & Selvaraj, R. (2019). Photocatalytic Degradation of Rhodamine B by Zinc Oxide Nanoparticles Synthesized Using the Leaf Extract of Cyanometra Ramiflora. Journal of Photochemistry and Photobiology B: Biology, 199, 111621. https://doi.org/10.1016/j.jphotobiol.2019.111621
18.Golmohammadi, M., Honarmand, M., & Ghanbari, S. (2020). A Green Approach to Synthesis of ZnO Nanoparticles Using Jujube Fruit Extract and Their Application in Photocatalytic Degradation of Organic Dyes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 229, 117961. https://doi.org/10.1016/j.saa.2019.117961
19.Lu, J., Batjikh, I., Hurh, J., Han, Y., Ali, H., Mathiyalagan, R., Ling, C., Ahn, J. C., & Yang, D. C. (2019). Photocatalytic Degradation of Methylene Blue Using Biosynthesized Zinc Oxide Nanoparticles from Bark Extract of Kalopanax Septemlobus. Optik, 182, 980-985. https://doi.org/10.1016/j.ijleo.2018.12.016
20.Hassan, S. S. M., Azab, W. I. M. E., Ali, H. R., & Mansour, M. S. M. (2015). Green Synthesis and Characterization of ZnO Nanoparticles for Photocatalytic Degradation of Anthracene. Advances in Natural Sciences: Nanoscience and Nanotechnology, 6(4), 045012. 10.1088/2043-6262/6/4/045012
21.Singh, K., Singh, J., Rawat, M., Green Synthesis of Zinc Oxide Nanoparticles Using Punica Granatum Leaf Extract and Its Application towards Photocatalytic Degradation of Coomassie Brilliant Blue R-250 Dye. SN Applied Sciences, 1, 1-8. https://doi.org/10.1007/s42452-019-0610-5
22.Fowsiya, J., Madhumitha, G., Al-Dhabi, N. A., & Arasu, M. V. (2016). Photocatalytic Degradation of Congo Red Using Carissa Edulis Extract Capped Zinc Oxide Nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 162, 395-401. https://doi.org/10.1016/j.jphotobiol.2016.07.011
23.Kamarajan, G., Anburaj, D. B., Porkalai, V., Muthuvel, A., & Nedunchezhian, G. (2022). Green Synthesis of ZnO Nanoparticles Using Acalypha Indica Leaf Extract and Their Photocatalyst Degradation and Antibacterial Activity. Journal of the Indian Chemical Society, 99, 100695. https://doi.org/10.1016/j.jics.2022.100695
24.Rajakumar, G., Thiruvengadam, M., Mydhili, G., Gomathi, T., & Chung, I. M. (2018). Green approach for synthesis of zinc oxide nanoparticles from  Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioprocess and Biosystems Engineering, 41, 21-30. https://doi.org/10.1007/s00449-017-1840-9
25.Agarwal, H., & Shanmugam, V. K. (2020). A review on anti-inflammatory activity of green synthesized zinc oxide nanoparticle: Mechanism-based approach. Bioorganic Chemistry, 94, 103423. https://doi.org/10.1016/j.bioorg.2019.103423
26.Zbair, M., Anfar, Z., Ait Ahsaine, H., Alem, N. E., & Ezahri, M. (2018). Acridine orange adsorption by zinc oxide/almond shell activated carbon composite: Operational factors, mechanism and performance optimization using central composite design and surface modeling. Journal of Environmental Management, 206, 383-397. https://doi.org/10.1016/j.jenvman.2017.10.058
27.Hadjltaief, H. B., Ameur, S. B., Costa, P. D. Zina, M. B., & Galvez, M. E. (2018). Photocatalytic decolorization of cationic and anionic dyes over ZnO nanoparticle immobilized on natural Tunisian clay. Applied Clay Science, 152, 148-157. https://doi.org/10.1016/j.clay.2017.11.008
28.Ong, C. B., Ng, L. Y., & Mohammad, A. W. (2018). A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. Renewable and Sustainable Energy Reviews, 81, 536-55. https://doi.org/10.1016/j.rser.2017.08.020
29.Sharma, J. L., Dhayal, V., & Sharma, R. K. (2021). White-rot fungus mediated green synthesis of zinc oxide nanoparticles and their impregnation on cellulose to develop environmental friendly antimicrobial fibers. 3 Biotech, 11, 269. https://doi.org/10.1007/s13205-021-02840-6
30.Sadiq, H., Sher, F., Sehar, S., Lima, E. C., Zhang, S., Iqbal, H. M. N., Zafar, F., & Nuhanović, M. (2021). Green Synthesis of ZnO Nanoparticles from Syzygium Cumini Leaves Extract with Robust Photocatalysis Applications. Journal of Molecular Liquids, 335, 116567. https://doi.org/10.1016/j.molliq.2021.116567
31.Hosny, M., Fawzy, M., El-Borady, O. M., & Mahmoud, A. E. D. (2021). Comparative study between Phragmites australis root and rhizome extracts for mediating gold nanoparticles synthesis and their medical and environmental applications. Advanced Powder Technology, 32, 2268-2279. https://doi.org/10.1016/j.apt.2021.05.004
32.Vinayagam, R., Selvaraj, R., Pugazhendhi, A., & Varadavenkatesan, T. (2020). Synthesis, characterization and photocatalytic dye degradation capability of Calliandra haematocephala-mediated zinc oxide nanoflowers, Journal of Photochemistry & Photobiology, B: Biology, 203, 111760. https://doi.org/10.1016/j.jphotobiol.2019.111760
Published
2024-07-30
How to Cite
[1]
BARUAH, R., TALUKDAR, K., CUKHAMU, V. and DAS, A.M. 2024. Biopolymer Supported ZnO Bionanocomposites Film and Their Application in Environmental Remediation and Controlling of Contagious Diseases. IIChE-CHEMCON. (Jul. 2024). DOI:https://doi.org/10.36375/prepare_u.iiche.a385.
Section
Articles