An Up-To-Date Review of Microbially-induced Carbonate Precipitation Process and its Applications
Abstract
Microbially-induced carbonate precipitation (MICP) is a natural process wherein microbes alter the environment and cause the creation of carbonate minerals. MICP is quicker than typical mineralization owing to the involvement of microbial enzymes. It is economical, sustainable, and environmentally friendly. MICP has many applications, including reinforcing soil and building materials, mending concrete cracks, capturing CO2, and producing bio- composites. This review seeks to understand the physiology of the MICP process, along with its applications in sustainable construction. Research progress made in this area over the past one decade is lucidly presented. Focus is placed on bio-concrete, which through microbial self-healing, effectively combats concrete's vulnerability to cracking in a durable and practical fashion. Use of the ureolytic bacterium, Lysinibacillus sphaericus is explored in the context of self-healing concrete formulation, with focus on its merits over other microbial species with carbonate precipitating potential.
References
Cement Kiln Dust with a Potential to Apply in Bio-Concrete. 140 : 012155 doi:10.1088/1755-
1315/140/1/012155.
2. Adharsh Rajasekar, Charles K. S. Moy, Stephen Wilkinson, Raju Sekar (2021) Microbially induced calcite
precipitation performance of multiple landfill indigenous bacteria compared to a commercially available bacteria in porous media. 16(7): e0254676. https://doi.org/10.1371/journal.
3. Ali Vahabiab, Ali Akbar Ramezanianpourb & Kambiz Akbari Noghabi. 2014. A preliminary insight into the
revolutionary new line in improving concrete properties using an indigenous bacterial strain Bacillus licheniformis AK01, as a healing agent .19:5, 614-627, DOI: 10.1080/19648189.2014.960951.
4. Amal A. Nasser, Noha M. Sorour, Mohamed A. Saafan, Rateb N. Abbas. 2022. Microbially-Induced-Calcite- Precipitation (MICP): A biotechnological approach to enhance the durability of concrete using Bacillus
pasteurii and Bacillus sphaericus. https://doi.org/10.1016/j.heliyon.2022.e09879.
5. Atreyee Sarkara, Avishek Chatterjee, Saroj Mandal, and Brajadulal Chattopadhyay 2019. Evaluation of Self- Healing Attribute of an Alkaliphilic Microbial Protein in Cementitious Mortars. DOI:10.1061/(ASCE)MT.1943-5533.0004197.
6. B. Madhu Sudana Reddy, D. Revathi. 2019. An experimental study on the effect of Bacillus sphaericus bacteria in crack filling and strength enhancement of concrete. Materials Today: Proceedings, 19, 803–809. https://doi.org/10.1016/j.matpr.2019.08.135.
7. Faisal Mahmood, Sardar Kashif Ur Rehman, Mohammed Jameel, Nadia Riaz, Muhammad Faisal Javed,
Abdelatif Salmi and Youssef Ahmed Awad. 2022. Self-Healing Bio-Concrete Using Bacillus subtilis
Encapsulated in Iron Oxide Nanoparticles.15: 7731. https://doi.org/10.3390/ma15217731.
8. Henk M. Jonkers & Erik Schlangen. 2008. Development of a bacteria-based self-healing concrete.
DOI:10.1201/9781439828410.CH72.
9. Henk M. Jonkers, Arjan Thijssena, Gerard Muyzer, Oguzhan Copuroglua, Erik Schlangena 2008. Application
of bacteria as self-healing agent for the development of sustainable concrete. 36:230-235. doi:
10.1016/j.ecoleng.2008.12.036. 126 (2016) 297–303. https://doi.org/10.1016/j.conbuildmat.2016.09.023.
10. Huaicheng Chen, Chunxiang Qian, Haoliang Huang. 2016. Self-healing cementitious materials based on
bacteria and nutrients immobilized respectively. 126:297-303 doi:10.1016/j.conbuildmat.2016.09.023
11. Islam M. Riad, Ahmed A. Elshami, Mohamed M. Yousry Elshikh. 2022. Infuence of concentration
and proportion prepared bacteria on properties of self Healing concrete in sulfate environment.
DOI:10.1007/s41062-021-00670-2.
12. J. Vanjinathan, V. Sampathkumar, N. Pannirselvam, Ragi Krishnan, M. Sivasubramanian, S. Kandasamy, S.
D. Anitha Selvasofia & M. Kavisri .2023. Microbially-induced self-healing bioconcrete for sustainable development. DOI:10.1007/s13399-023-04640-9.
13. J. Y. Wang, D. Snoeck, S. Van Vlierverghe, W. Verstraete, N. De Belie. 2014. Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. 68:110–119. https://doi.org/10.1016/j.conbuildmat.2014.06.018.
14. J. Y. Wang, N. De Belie, W. Verstraete 2011. Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. 39:567–577. DOI 10.1007/s10295-011-1037-1.
15. Jiaguang Zhang, Yuanzhen Liu, Tao Feng, Mengjun Zhou, Lin Zhao, Aijuan Zhou, Zhu Li. 2017.
Immobilizing bacteria in expanded perlite for the crack self-healing in Concrete, 148: 610-
617. http://dx.doi.org/10.1016/j.conbuildmat.2017.05.021.
16. Jianyun Wang, Henk M. Jonkers, Nico Boon, Nele De Belie. 2017. Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete. 101(12):5101-5114. doi: 10.1007/s00253-017-8260-2. PMID: 28365797.
17. Leena Chaurasia, Vishakha Bisht, L.P. Singh, Sanjay Gupta. 2018. A novel approach of biomineralization for
improving micro and macro-properties of concrete. 195 (2019) 340–351. https://doi.org/10.1016/j.conbuildmat.2018.11.031.
18. Cheng L, Cord-Ruwisch R. Selective enrichment and production of highly urease active bacteria by non-
sterile (open) chemostat culture. 40(10):1095-104. doi: 10.1007/s10295-013-1310-6. PMID: 23892419.
19. Marcondes, Carlos Gustavo Nastari, Oliveira, Isaac Aguiar, Anjos, Juliane Cristine Santos, Medeiros,
Marcelo Henrique Farias. 2020. Lysinibacillus sphaericus as a self-healing agent for cement-based materials:
a preliminary investigation DOI: https://doi.org/10.37118/ijdr.21078.02.2021.
20. Minyoung Hong, Indong Jang, Yongjun Son, Chongku Yi and Woojun Park. 2021. Agricultural by-products and oyster shell as alternative nutrient sources for microbial sealing of early age cracks in mortar. https://doi.org/10.1186/s13568-020-01166-5.
21. Mousumi Biswas, Sudipta Majumdar, Trinath Chowdhurya, Brajadulal Chattopadhyaya, Saroj Mandal, Umesh Halder, Shinji Yamasaki. 2010. 46:581–587. doi: 10.1016/j.enzmictec.2010.03.005.
22. Nuraiffa Syazwi Adzami, Miskiah Fadilah Ghazali, Amira Hidayati Ramli, Husnul Azan Tajarudin, Zawawi Daud. 2018. a new potential of calcium carbonate production induced by bacillus sphaericus in batch fermentation. https://doi.org/10.30880/ijie.2018.10.09.024.
23. Qian Chunxiang, Wang Jianyun, Wang Ruixing, Cheng Liang. 2008. Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii. doi: 10.1016/j.msec.2008.10.025.
24. Rajneesh Vashisht, Sampan Attri, Deepak Sharma, Abhilash Shukla, Gunjan Goel. 2017. Monitoring biocalcification potential of Lysinibacillus sp. isolated from alluvial soils for improved compressive strength
of concrete. 207:226–231. https://doi.org/10.1016/j.micres.2017.12.010.
25. S. Udhaya a, V. Vandhana Devi b, J. Philips b, R.L. Lija b. 2023. Experimental study on bio-concrete for sustainable construction .https://doi.org/10.1016/j.matpr.2023.03.676.
26. S.A. Abo-El-Enein, A.H. Ali, Fatma N. Talkhan, H.A. Abdel-Gawwad .2012. Utilization of microbial induced calcite precipitation for sand consolidation and mortar crack remediation. 8:3, 185-192, DOI:
10.1016/j.hbrcj.2013.02.001.
27. S.S. Bang, J.J. Lippert, U. Yerra, S. Mulukutla and V. Ramakrishnan. 2010. Microbial calcite, a bio-based smart nanomaterial in concrete remediation. 1:1, 28-39, DOI: 10.1080/19475411003593451.
28. S.S. Banga, J.J. Lipperta, U. Yerra, S. Mulukutla and V. Ramakrishnan .2010. Microbial calcite, a bio-based smart nanomaterial in concrete remediation. DOI:10.1080/19475411003593451.
29. Shannon Stocks-Fischer, Johnna K. Galinat, Sookie S. Bang .1999. Microbiological precipitation of CaCO
31:1563-1571.https://doi.org/10.1016/S0038-0717(99)00082-6.Shiren O. Ahmed, Amal A. Nasser, Rateb N. Abbas, Monir M. Kamal, Magdy A. Zahran, Noha M. Sorour. 2021. Production of bioconcrete with improved durability properties using Alkaliphilic Egyptian bacteria, PMID: 33968575, DOI: 10.1007/s13205-
021-02781-0.
30. Sookie S. Banga, Johnna K. Galinata, V. Ramakrishnan. 2000. Calcite precipitation induced by polyurethane- immobilized Bacillus pasteurii. https://doi.org/10.1016/S0141-0229(00)00348-3.
31. V. Ramakrishnan, K. P. Ramesh and S. S. Bang. 2000. Bacterial concrete doi: 10.1117/12.424404.
32. Varenyam Achal, Abhijit Mukherjee, M. Sudhakara Reddy. 2010. Biocalcification by Sporosarcina pasteurii
using corn steep liquor as nutrient source.https://doi.org/10.1089/ind.2010.6.170.
33. Varenyam Achal, Xiangliang Pan, Nilüfer Özyurt. 2010. Improved strength and durability of fly ash- amended concrete by microbial calcite precipitation 37:554-559. https://doi.org/10.1016/j.ecoleng.2010.11.009.
34. Wasim Khaliq, Muhammad Basit Ehsan. 2015. Crack healing in concrete using various bio influenced self- healing techniques. 102:349–357. https://doi.org/10.1016/j.conbuildmat.2015.11.006.
35. Wiboonluk Pungrasmi, Jirapa Intarasoontron, Pitcha Jongvivatsakul, and Suched Likitlersuang. 2019.
Evaluation of Microencapsulation Techniques for MICP Bacterial Spores Applied in Self-Healing
Concrete. 9:12484 | https://doi.org/10.1038/s41598-019-49002-6.
36. Yusuf Ç. Erşan, Nico Boon and Nele De Beli. 2018. Granules with activated compact denitrifying core
(ACDC) for self-healing concrete with corrosion protection functionality. Volume: 2: 475-484.
37. Yusuf Cagatay Ersan, Nico Boon, Nele De Belie. 2013. Microbial Self-Healing Concrete: Denitrification as an Enhanced and Environment-Friendly Approach. Abstract ID: 43 ICSHM2015.
38. Z M Hussein, A H Abedali and A S Ahmead 2019. Improvement Properties of Self -Healing Concrete by
Using Bacteria 584: 012034. doi:10.1088/1757-899X/584/1/012034.