Sustainable sequestration of carbon dioxide - A review

  • SANGITA BHATTACHARJEE Heritage Institute of Technology, Kolkata - 700107, India
  • TRINA DUTTA JIS College of Engineering, Kalyani, West Bengal - 741235, India
Keywords: Greenhouse gases, ready-mix concrete, sustainable, microalgae, biomass, bio-fixation

Abstract

Among various GHG gases causing global warming, the contribution by CO2 alone is about 60%. Post combustion carbon capture is most viable technique compared to pre-combustion and oxy-fuel combustion CO2 capture techniques used for conventional coal based thermal power plants. Cryogenic separation, chemical absorption, adsorption, membrane based separation etc. belong to post combustion carbon sequestration technology however these methods have some or other disadvantages. Ocean injection results in lowering of pH of sea water thus affecting bacteria zooplankton and benthos species. Moreover following a considerable period of time, the stored CO2 can leak. Controlled addition of CO2 in ready-mix concrete, as produced in the United States, Canada and Singapore improves the compressive strength without sacrificing performance or durability. Microalgae consumes substantial quantity of carbon dioxide (1Kg dry algae biomass consumes about 1.83 Kg CO2) and hence very effective in bio-fixation of CO2 waste as well as in improvement of air quality. Accumulation of oil (about 20 to 50% weight of dry biomass) and fast growth of microalgae make microalgae cultivation a commercially interesting and promising technology to mitigate global warming problem and generation of bio-fuel alongwith other benefits namely production of nutrient dense foods, chemicals and fertilizer.

Author Biographies

SANGITA BHATTACHARJEE, Heritage Institute of Technology, Kolkata - 700107, India

Assistant Professor, Chemical Engineering Department

TRINA DUTTA, JIS College of Engineering, Kalyani, West Bengal - 741235, India

Assistant Professor, Department of Chemistry

References

1.Abu-Zahra, M. R., Schneiders, L. H., Niederer, J. P., Feron, P. H., & Versteeg, G. F. (2007). CO2 capture from power plants: Part I. A parametric study of the technical performance based on monoethanolamine. International Journal of Greenhouse gas control, 1(1), 37-46.

2.Alvarez-Guerra, M., Albo, J., Alvarez-Guerra, E., and Irabien, A. (2015). Ionic liquids in the electrochemical valorisation of CO2. Energy Environ. Sci. 8, 2574–2599. doi: 10.1039/C5EE01486G

3.Azzouz, A., Platon, N., Nousir, S., Ghomari, K., Nistor, D., Shiao, T. C., & Roy, R. (2013). OH-enriched organo-montmorillonites for potential applications in carbon dioxide separation and concentration. Separation and Purification Technology, 108, 181-188.

4.Babarinde, F., & Adio, M. A. (2020). A review of carbon capture and sequestration technology. Journal of Energy Technology and Environment, 2.

5.Beecy, D. J., & Kuuskraa, V. A. (2001). Status of US geologic carbon sequestration research and technology. Environmental Geosciences, 8(3), 152-159.

6.Bitog JP, Lee IB, Lee CG, Kim KS, Hwang HS, Hong SW, et al. Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: a review. Comput. Electr Agric 2011;76:131–47.

7.Cantrell KB, Ducey T, Ro KS, Hunt PG. Livestock waste-to-bioenergy genera- tion opportunities. Bioresource Technology 2008; 99 (17):7941–53.

8.CBC News 2023 https://www.cbsnews.com/news/cement-industry-co2-emissions-climate-change-brimstone/

9.Chisti Y. Biodiesel from microalgae. Biotechnology Advances 2007;25 (3):294– 306.

10.D. Zhang et al.Review on carbonation curing of cement-based materials, J. CO2. Util. (2017)

11.Dashti, A., Harami, H. R., Rezakazemi, M., & Shirazian, S. (2018). Estimating CH4 and CO2 solubilities in ionic liquids using computational intelligence approaches. Journal of Molecular Liquids, 271, 661-669.


12.Dutta, T., Bhattacharjee, S., & Chakraborty, J. (2020). Sustainable Carbon Di-Oxide Sequestration Using Photosynthetic Reactions.

13.Esposito, E., Clarizia, G., Bernardo, P., Jansen, J. C., Sedláková, Z., Izák, P., ... & Tasselli, F. (2015). Pebax®/PAN hollow fiber membranes for CO2/CH4 separation. Chemical Engineering and Processing-Process Intensification, 94, 53-61.

14.Essaki K, Nakagawa K, Kato M, Uemoto H, 2004. CO2 absorption by lithium silicate at room temperature. Journal of Chemical Engineering of Japan, 37 (6):772-777.

15.Fasihi, M., Shirazian, S., Marjani, A., & Rezakazemi, M. (2012). Computational fluid dynamics simulation of transport phenomena in ceramic membranes for SO2 separation. Mathematical and Computer Modelling, 56(11-12), 278-286.

16.Figueroa, J. D., Fout, T., Plasynski, S., McIlvried, H., & Srivastava, R. D. (2008). Advances in CO2 capture technology—the US Department of Energy's Carbon Sequestration Program. International journal of greenhouse gas control, 2(1), 9-20.

17.Gao Y., Gregor C., Liang Y., Tang D., Tweed C. Algae biodiesel – a feasibility report, Chem. Cent J. (2012) :6.[S1-S].

18.Ge, X., & Ma, S. (2020). CO2 capture and separation of metal–organic frameworks. Materials for carbon capture, 5-27.

19.Goodrich, B. F., de la Fuente, J. C., Gurkan, B. E., Zadigian, D. J., Price, E. A., Huang, Y., et al. (2011). Experimental measurements of amine-functionalized anion-tethered ionic liquids with carbon dioxide. Ind. Eng. Chem. Res. 50, 111–118. doi: 10.1021/ie101688a

20.Hajilary, N., & Rezakazemi, M. (2018). CFD modeling of CO2 capture by water-based nanofluids using hollow fiber membrane contactor. International Journal of Greenhouse Gas Control, 77, 88-95.

21.Herzog, H. (2001). What future for carbon capture and sequestration?. Environmental Science and Technology-Columbus, 35(7), 148A.

22.India Blog 2022, https://www.investindia.gov.in/team-india-blogs/carbon-capture-utilization-and-storage-ccus-indias-leap-towards-green-energy.

23.Kajama, M. N., Nwogu, N. C., & Gobina, E. (2014). Experimental study of carbon dioxide separation with nanoporous ceramic membranes. WIT Transactions on Ecology and the Environment, 186, 625-633.

24.Laurent Barcelo, John Kline, Gunther Walenta & Ellis. M. Gartner, Cement and carbon emissions, Materials and Structures (2014), 47 (6), DOI:10.1617/s11527-013-0114-5
25.Lewis NS, Nocera DG. 2006. Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences 103: 15729–15735.

26.Li, H., Wang, K., Sun, Y., Lollar, C. T., Li, J., & Zhou, H. C. (2018). Recent advances in gas storage and separation using metal–organic frameworks. Materials Today, 21(2), 108-121.

27.Liu, N., Bond, G. M., Abel, A., McPherson, B. J., & Stringer, J. (2005). Biomimetic sequestration of CO2 in carbonate form: Role of produced waters and other brines. Fuel processing technology, 86(14-15), 1615-1625.

28.Luis, P. (2016). Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives. Desalination, 380, 93-99.

29.M. Adamczyk, J. Lasek and A. Skawinska, ‘CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditan’, Appl Biochem Biotechnol, (2016), 179,1248-1261.

30.Maroto-Valer, M. M., Fauth, D. J., Kuchta, M. E., Zhang, Y., & Andrésen, J. M. (2005a). Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration. Fuel Processing Technology, 86(14-15), 1627-1645.

31.Maroto-Valer, M. M., Tang, Z., & Zhang, Y. (2005b). CO2 capture by activated and impregnated anthracites. Fuel Processing Technology, 86(14-15), 1487-1502.

32.Merkel, T. C., Lin, H., Wei, X., & Baker, R. (2010). Power plant post-combustion carbon dioxide capture: An opportunity for membranes. Journal of membrane science, 359(1-2), 126-139.

33.Mesbah, M., Shahsavari, S., Soroush, E., Rahaei, N., & Rezakazemi, M. (2018). Accurate prediction of miscibility of CO2 and supercritical CO2 in ionic liquids using machine learning. Journal of CO2 Utilization, 25, 99-107.

34.Metting FB. Biodiversity and application of microalgae. Journal of Industrial Microbiology 1996;17 (5–6):477–89.

35.Metz, B., Davidson, O., De Coninck, H. C., Loos, M., & Meyer, L. (2005). IPCC special report on carbon dioxide capture and storage. Cambridge: Cambridge University Press.

36.Nelson, M. G. (2004). Carbon dioxide sequestration by mechanochemical carbonation of mineral silicates. University of Utah (US).

37.Niedermaier, I., Bahlmann, M., Papp, C., Kolbeck, C., Wei, W., Calderon, S. K., et al. (2014). Carbon dioxide capture by an amine functionalized ionic liquid: fundamental differences of surface and bulk behavior. J. Am. Chem. Soc. 136, 436–441. doi: 10.1021/ja410745a

38.Odunlami, O. A., Vershima, D. A., Oladimeji, T. E., Nkongho, S., Ogunlade, S. K., & Fakinle, B. S. (2022). Advanced techniques for the capturing and separation of CO2–a review. Results in Engineering, 15, 100512.
39.R. Nivetha,S. Sharma,J. Jana,J. S. Chung, W. M. Choiand S. H. Hur, ‘Recent Advances and New Challenges: Two-Dimensional Metal–Organic Framework and Their Composites/Derivatives for Electrochemical Energy Conversion and Storage’, International Journal of Energy and Research, Volume 2023 | Article ID 8711034, https://doi.org/10.1155/2023/8711034.

40.Rao, A. B., & Rubin, E. S. (2002). A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environmental science & technology, 36(20), 4467-4475.

41.Razavi, S. M. R., Rezakazemi, M., Albadarin, A. B., & Shirazian, S. (2016). Simulation of CO2 absorption by solution of ammonium ionic liquid in hollow-fiber contactors. Chemical Engineering and Processing: Process Intensification, 108, 27-34.

42.Rezakazemi, M., Darabi, M., Soroush, E., & Mesbah, M. (2019). CO2 absorption enhancement by water-based nanofluids of CNT and SiO2 using hollow-fiber membrane contactor. Separation and Purification Technology, 210, 920-926.

43.Rezakazemi, M., Heydari, I., & Zhang, Z. (2017). Hybrid systems: Combining membrane and absorption technologies leads to more efficient acid gases (CO2 and H2S) removal from natural gas. Journal of CO2 utilization, 18, 362-369.

44.Rezakazemi, M., Niazi, Z., Mirfendereski, M., Shirazian, S., Mohammadi, T., & Pak, A. (2011). CFD simulation of natural gas sweetening in a gas–liquid hollow-fiber membrane contactor. Chemical Engineering Journal, 168(3), 1217-1226.

45.Rosen, B. A., Salehi-Khojin, A., Thorson, M. R., Zhu, W., Whipple, D. T., Kenis, P. J. A., et al. (2011). Ionic liquid–mediated selective conversion of CO2 to CO at low overpotentials. Science 334, 642–643. doi: 10.1126/science

46.Roussanaly, S., Anantharaman, R., Lindqvist, K., Zhai, H., & Rubin, E. (2016). Membrane properties required for post-combustion CO2 capture at coal-fired power plants. Journal of membrane science, 511, 250-264.

47.Rubin, E. S., Mantripragada, H., Marks, A., Versteeg, P., & Kitchin, J. (2012). The outlook for improved carbon capture technology. Progress in energy and combustion science, 38(5), 630-671.

48.Sang Yun Y., Lee S.B., Park J.M., Lee C., Yang J., (1999), Carbon dioxide fixation by algal cultivation using wastewater nutrients. Jouunal of Chemical Technology and Biotechnology 69 (451-455).

49.Saqib, A., Tabbssum, M. R., Rashid, U., Ibrahim, M., Gill, S. S., and Mehmood, M. A. (2013). Marine macroalgae Ulva: a potential feed-stock for bioethanol and biogas production. Asian J. Agri. Biol. 1, 155–163.

50.Sean Monkman and Mark McDonald, ‘On Carbon Dioxide Utilization as a Means to Improve the Sustainability of Ready-Mixed Concrete, Journal of Cleaner Production (2017), 167, 365-375.

51.Shafie, S. N. A., Md Nordin, N. A. H., Bilad, M. R., Misdan, N., Sazali, N., Putra, Z. A., ... & Man, Z. (2021). [EMIM][Tf2N]-Modified Silica as Filler in Mixed Matrix Membrane for Carbon Dioxide Separation. Membranes, 11(5), 371.

52.Shao, R., and Stangeland, A. (2009). Amines Used in CO2 Capture–Health and Environmental Impacts. Oslo: The Bellona Foundation.

53.Shirazian, S., Marjani, A., & Rezakazemi, M. (2012). Separation of CO 2 by single and mixed aqueous amine solvents in membrane contactors: fluid flow and mass transfer modeling. Engineering with Computers, 28, 189-198.

54.Soroush, E., Mesbah, M., Hajilary, N., & Rezakazemi, M. (2019). ANFIS modeling for prediction of CO2 solubility in potassium and sodium based amino acid Salt solutions. Journal of Environmental Chemical Engineering, 7(1), 102925.

55.Soroush, E., Shahsavari, S., Mesbah, M., & Rezakazemi, M. (2018). A robust predictive tool for estimating CO2 solubility in potassium based amino acid salt solutions. Chinese Journal of Chemical Engineering, 26(4), 740-746.

56.Stewart, C., & Hessami, M. A. (2005). A study of methods of carbon dioxide capture and sequestration––the sustainability of a photosynthetic bioreactor approach. Energy Conversion and management, 46(3), 403-420.

57.Suliestyah, S., & Sari, I. P. (2021, March). Effect of temperature and time of carbonization on coal-based activated carbon adsorption. In IOP Conference Series: Materials Science and Engineering (Vol. 1098, No. 6, p. 062020). IOP Publishing.

58.Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., ... & Long, J. R. (2012). Carbon dioxide capture in metal–organic frameworks. Chemical reviews, 112(2), 724-781.

59.Tomioka, T., Sakai, T., & Mano, H. (2013). Carbon dioxide separation technology from biogas by “membrane/absorption hybrid method”. Energy Procedia, 37, 1209-1217.

60.United State Geological Survey(2008). https://pubs.usgs.gov/fs/2008/3097/pdf/CarbonFS.pdf

61.Wang, M., & Oko, E. (2017). Special issue on carbon capture in the context of carbon capture, utilisation and storage (CCUS). International Journal of Coal Science & Technology, 4, 1-4.

62.Wang, Y., Zhao, L., Otto, A., Robinius, M., & Stolten, D. (2017). A review of post-combustion CO2 capture technologies from coal-fired power plants. Energy Procedia, 114, 650-665.

63.Wang, Y., Zhao, L., Otto, A., Robinius, M., & Stolten, D. (2017). A review of post-combustion CO2 capture technologies from coal-fired power plants. Energy Procedia, 114, 650-665.
64.X.Kang, G.Fu, X.Z. Fu and J.L. Luo,Copper-based metal-organic frameworks for electrochemical reduction of CO2, Chinese Chemical Letters, (2023), 34 (6), 107757https://doi.org/10.1016/j.cclet.2022.107757.

65.Xin Wang, Chunbo Hao,Zhang Feng,Feng Chuanping,YangYingnan. Inhibition of the growth of two blue–green algae species (Microsystis aruginosa and Anabaena spiroides) by acidification treatment susing carbon di oxide. Bio resour Technol 2011;102(10): 5742–8.

66.Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R. B., Bland, A. E., & Wright, I. (2008). Progress in carbon dioxide separation and capture: A review. Journal of environmental sciences, 20(1), 14-27.

67.Yeoung –Sang Yun, Sun Bok Lee, Jong Moon Park, Choong- II Lee, Ji-Won Yang, Carbon Dioxide Fixation by Algal Cultivation Using Wastewater Nutrients, Journal of Chemical Technology and Biotechnology, 1997, Vol.69, Issue 4, pp 451-455.

68.Younas, M., Rezakazemi, M., Daud, M., Wazir, M. B., Ahmad, S., Ullah, N., & Ramakrishna, S. (2020). Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs). Progress in Energy and Combustion Science, 80, 100849.

69.Zhang, S., Liu, L., Zhang, L., Zhuang, Y., & Du, J. (2018). An optimization model for carbon capture utilization and storage supply chain: A case study in Northeastern China. Applied Energy, 231, 194-206.

70.Zhang, Z., Zhao, S., Rezakazemi, M., Chen, F., Luis, P., & Van der Bruggen, B. (2017). Effect of flow and module configuration on SO2 absorption by using membrane contactors. Global NEST Journal, 19(4), 716-725.

71.Zhao, L., Riensche, E., Menzer, R., Blum, L., & Stolten, D. (2008). A parametric study of CO2/N2 gas separation membrane processes for post-combustion capture. Journal of membrane science, 325(1), 284-294.

72.Zhao, L., Riensche, E., Weber, M., & Stolten, D. (2012). Cascaded Membrane Processes for Post‐Combustion CO2 Capture. Chemical engineering & technology, 35(3), 489-496.
Published
2024-07-30
How to Cite
[1]
BHATTACHARJEE, S. and DUTTA, T. 2024. Sustainable sequestration of carbon dioxide - A review. IIChE-CHEMCON. (Jul. 2024). DOI:https://doi.org/10.36375/prepare_u.iiche.a393.
Section
Articles