Photobioreactors for production of biofuels from microalgae: a concise review
Abstract
Microalgal strains are potential cell factories capable of producing valuable biochemicals including biofuels. Photobioreactors are closed systems capable of producing large quantities of microalgae and high yields of biofuel under optimal operating conditions, namely, light, temperature and pH. The design configurations of these systems are horizontal or serpentine tube, flat plate, bubble column and stirred tank of which tubular and flat plate bioreactors show promising results in biofuel production. However, the separation of algal biomass from the treated wastewater poses a major challenge in the use of algae for wastewater treatment. To overcome this problem, biofilm-based photobioreactor, an immobilized algal cultivation reactor, has emerged as a promising strategy. In the present study, we discuss the different types of photobioreactors, the distinct advantages of using these reactors over the open pond technology, the microalgal growth dynamics, reaction kinetics, diffusional limitations, and challenges faced during reactor scale-up. The review finally tries to provide a perspective on how further developments can be made in this reactor technology for setting up an economical, controllable and efficient method of microalgae cultivation and biofuel generation.
References
2.L. Brennan, P. Owende, Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sust. Energ. Rev. 14 (2010) 557–577, https://doi.org/10.1016/j.rser.2009.10.009. F. García-Camacho, J.J. Gallardo-Rodríguez, A. Sanchez-Mir ´ on, ´ M.C. Ceron- ´ García, E.H. Belarbi, Y. Chisti, E. Grima-Molina, Biotechnological significance of toxic marine dinoflagellates, Biotechnol. Adv. 25 (2007) 176–194, https://doi. org/10.1016/j.biotechadv.2006.11.008.
3.J. Assunçao, ˜ A. Catarina Guedes, F. Xavier Malcata, Biotechnological and pharmacological applications of biotoxins and other bioactive molecules from dinoflagellates, Mar. Drugs. 15 (2017) 1–43, https://doi.org/10.3390/ md15120393. T.M. Mata, A.A. Martins, N.S. Caetano, Microalgae for biodiesel production and other applications: A review, Renew, Sustain. Energy Rev 14 (2010) 217–232, https://doi.org/10.1016/j.rser.2009.07.020.
4.M.K. Lam, K.T. Lee, A.R. Mohamed, Current status and challenges on microalgaebased carbon capture, Int. J. Greenh. Gas Control. 10 (2012) 456–469, https:// doi.org/10.1016/j.ijggc.2012.07.010.
5.C.Y. Chen, K.L. Yeh, R. Aisyah, D.J. Lee, J.S. Chang, Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review, Bioresour. Technol. 102 (2011) 71–81, https://doi.org/10.1016/j. biortech.2010.06.159 Y. Chisti, Biodiesel from microalgae beats bioethanol, Trends Biotechnol. 26 (2007) 126–131, https://doi.org/10.1016/j.tibtech.2007.12.002.
6.Y. Chisti, Biodiesel from microalgae beats bioethanol, Trends Biotechnol. 26 (2007) 126–131, https://doi.org/10.1016/j.tibtech.2007.12.002.
7.R.P. John, G.S. Anisha, K.M. Nampoothiri, A. Pandey, Micro and macroalgal biomass: a renewable source for bioethanol, Bioresour. Technol. 102 (2011) 186–193, https://doi.org/10.1016/j.biortech.2010.06.139.
8.R.N. Singh, S. Sharma, Development of suitable photobioreactor for algae production - a review, Renew. Sust. Energ. Rev. 16 (2012) 2347–2353, https:// doi.org/10.1016/j.rser.2012.01.026.
9.P.L. Show, M.S.Y. Tang, D. Nagarajan, T.C. Ling, C.W. Ooi, J.S. Chang, A holistic approach to managing microalgae for biofuel applications, Int. J. Mol. Sci. 18 (2017) 1–34, https://doi.org/10.3390/ijms18010215.
10.A. S´anchez-Miron, ´ M.C. García-Ceron, ´ F. García-Camacho, E. Molina-Grima, Y. Chisti, Mixing in bubble column and airlift reactors, Chem. Eng. Res. Des. 82 (2004) 1367–1374, https://doi.org/10.1205/cerd.82.10.1367.46742.
11.T.M. Mata, A.A. Martins, N.S. Caetano, Microalgae for biodiesel production and other applications: A review, Renew, Sustain. Energy Rev 14 (2010) 217–232, https://doi.org/10.1016/j.rser.2009.07.020.
12.M.K. Lam, K.T. Lee, A.R. Mohamed, Current status and challenges on microalgaebased carbon capture, Int. J. Greenh. Gas Control. 10 (2012) 456–469, https:// doi.org/10.1016/j.ijggc.2012.07.010.
13.M. Płaczek, A. Patyna, S. Witczak, Technical evaluation of photobioreactors for microalgae cultivation, in: E3S Web Conf., 2017, p. 02032, https://doi.org/ 10.1051/e3sconf/20171902032.
14.E. Molina Grima, J. Fern´ andez, F.G. Aci´en, Y. Chisti, Tubular photobioreactor design for algal cultures, J. Biotechnol. 92 (2001) 113–131, https://doi.org/ 10.1016/S0168-1656(01)00353-4.
15.Y. Chisti, Biodiesel from microalgae, Biotechnol. Adv. 25 (2007) 294–306, https://doi.org/10.1016/j.biotechadv.2007.02.001.
16.P.L. Gupta, S.M. Lee, H.J. Choi, A mini review: photobioreactors for large scale algal cultivation, World J. Microbiol. Biotechnol. 31 (2015) 1409–1417, https:// doi.org/10.1007/s11274-015-1892-4.
17.A.P. Carvalho, L.A. Meireles, F.X. Malcata, Microalgal reactors: a review of enclosed system designs and performances, Biotechnol. Prog. 22 (2006) 1490–1506, https://doi.org/10.1021/bp060065r.
18. C.Y. Chen, K.L. Yeh, R. Aisyah, D.J. Lee, J.S. Chang, Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review, Bioresour. Technol. 102 (2011) 71–81, https://doi.org/10.1016/j. biortech.2010.06.159
19. M.K. Lam, K.T. Lee, A.R. Mohamed, Current status and challenges on microalgaebased carbon capture, Int. J. Greenh. Gas Control. 10 (2012) 456–469, https:// doi.org/10.1016/j.ijggc.2012.07.010.
20.M.S.A. Rahaman, L.-H. Cheng, X.-H. Xu, L. Zhang, H.-L. Chen, A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes, Renew. Sust. Energ. Rev. 15 (2011) 4002–4012, https://doi.org/ 10.1016/j.rser.2011.07.031.
21.M. Płaczek, A. Patyna, S. Witczak, Technical evaluation of photobioreactors for microalgae cultivation, in: E3S Web Conf., 2017, p. 02032, https://doi.org/ 10.1051/e3sconf/20171902032.
22.A.P. Carvalho, L.A. Meireles, F.X. Malcata, Microalgal reactors: a review of enclosed system designs and performances, Biotechnol. Prog. 22 (2006) 1490–1506, https://doi.org/10.1021/bp060065r.
23.A.P. Carvalho, L.A. Meireles, F.X. Malcata, Microalgal reactors: a review of enclosed system designs and performances, Biotechnol. Prog. 22 (2006) 1490–1506, https://doi.org/10.1021/bp060065r.
24.J.J. Gallardo-Rodríguez, A. S´ anchez-Miron, ´ F. García-Camacho, L. Lopez-rosales, ´ Y. Chisti, E. Molina-Grima, Bioactives from microalgal dinoflagellates, Biotechnol. Adv. 30 (2012) 1673–1684, https://doi.org/10.1016/j. biotechadv.2012.07.005.
25.G. Olivieri, P. Salatino, A. Marzocchella, Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications, J. Chem. Technol. Biotechnol. 89 (2014) 178–195, https://doi.org/ 10.1002/jctb.4218.
26. C.N. Dasgupta, J. Jose Gilbert, P. Lindblad, T. Heidorn, S.A. Borgvang, K. Skjanes, D. Das, Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production, Int. J. Hydrog. Energy 35 (2010) 10218–10238, https://doi.org/10.1016/j. ijhydene.2010.06.029.
27.M.R. Tredici, Mass production of microalgae: Photobioreactors, in: A. Richmond (Ed.), Handb. Microalgal Cult. Biotechnol. Appl. Phycol, Blackwell Publishing Ltd, Oxford, UK, 2007, pp. 178–214, https://doi.org/10.1002/9780470995280. ch9.
28.A. Karemore, D. Ramalingam, G. Yadav, G. Subramanian, R. Sen, Photobioreactors for Improved Algal Biomass Production: Analysis and Design Considerations, in: Algal Biorefinery an Integr, Springer International Publishing, Cham, Approach, 2015, pp. 103–124, https://doi.org/10.1007/978-3-319- 22813-6_5.
29. J. Degen, A. Uebele, A. Retze, U. Schmid-Staiger, W. Trosch, A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect, J. Biotechnol. 92 (2001) 89–94, https://doi.org/10.1016/S0168- 1656(01)00350-9.
30.Z. Yang, J. Cheng, X. Xu, J. Zhou, K. Cen, Enhanced solution velocity between dark and light areas with horizontal tubes and triangular prism baffles to improve microalgal growth in a flat-panel photo-bioreactor, Bioresour. Technol. 211 (2016) 519–526, https://doi.org/10.1016/j.biortech.2016.03.145.
31.I.S. Suh, C.-G. Lee, Photobioreactor engineering: design and performance, Biotechnol. Bioprocess Eng. 8 (2003) 313–321, https://doi.org/10.1007/ BF02949274.
32.J. Doucha, F. Straka, K. Lívanský, Utilization of flue gas for cultivation of microalgae Chlorella sp. in an outdoor open thin-layer photobioreactor, J. Appl. Phycol. 17 (2005) 403–412, https://doi.org/10.1007/s10811005-8701-7.
33.A. Juneja, R.M. Ceballos, G.S. Murthy, Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review, Energies. 6 (2013) 4607–4638, https://doi.org/10.3390/ en6094607.
34. D.A. Pereira, V.O. Rodrigues, S.V. Gomez, ´ E.A. Sales, O. Jorquera, Parametric sensitivity analysis for temperature control in outdoor photobioreactors, Bioresour. Technol. 144 (2013) 548–553, https://doi.org/10.1016/J. BIORTECH.2013.07.009.
35.36. A.P. Carvalho, L.A. Meireles, F.X. Malcata, Microalgal reactors: a review of enclosed system designs and performances, Biotechnol. Prog. 22 (2006) 1490–1506, https://doi.org/10.1021/bp060065r.
36.A.P. Carvalho, L.A. Meireles, F.X. Malcata, Microalgal reactors: a review of enclosed system designs and performances, Biotechnol. Prog. 22 (2006) 1490–1506, https://doi.org/10.1021/bp060065r.
37.M.E. Huntley, Z.I. Johnson, S.L. Brown, D.L. Sills, L. Gerber, I. Archibald, S. C. Machesky, J. Granados, C. Beal, C.H. Greene, Demonstrated large-scale production of marine microalgae for fuels and feed, ALGAL (2015) 24–26, https://doi.org/10.1016/j.algal.2015.04.016.
38.M.E. Iniguez, ˜ J.A. Conesa, A. Fullana, Recyclability of four types of plastics exposed to UV irradiation in a marine environment, Waste Manag. 79 (2018) 339–345, https://doi.org/10.1016/j.wasman.2018.08.006.
39.C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svr ˇ ˇcek, C. del Canizo, ˜ I. Tobias, Modifying the solar spectrum to enhance silicon solar cell efficiency-an overview of available materials, Sol. Energy Mater. Sol. Cells 91 (2007) 238–249, https://doi.org/10.1016/j.solmat.2006.09.003.
40.Zuorro, A., Mafei, G., Lavecchia, R., 2016. Optimization of enzyme assisted lipid extraction from Nannochloropsis microalgae. J. Taiwan Inst. Chem. Eng. 67, 106–114. https://doi.org/10.1016/j. jtice.2016.08.016.
41.Zheng, H., Yin, J., Gao, Z., Huang, H., Ji, X., Dou, C., 2011. Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: a comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Appl. Biochem. Biotechnol. 164, 1215–1224. https://doi.org/10.1007/s12010-011-9207-1.
42.A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: environmental pollution control and future directions. Bioresour. Technol. 301 (1), 1–19, 122804. https://doi.org/10.1016/j.biortech.2020.122804.
43. J. Degen, A. Uebele, A. Retze, U. Schmid-Staiger, W. Trosch, A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect, J. Biotechnol. 92 (2001) 89–94, https://doi.org/10.1016/S0168- 1656(01)00350-9.
44.Z. Yang, J. Cheng, X. Xu, J. Zhou, K. Cen, Enhanced solution velocity between dark and light areas with horizontal tubes and triangular prism baffles to improve microalgal growth in a flat-panel photo-bioreactor, Bioresour. Technol. 211 (2016) 519–526, https://doi.org/10.1016/j.biortech.2016.03.145.
45.I.S. Suh, C.-G. Lee, Photobioreactor engineering: design and performance, Biotechnol. Bioprocess Eng. 8 (2003) 313–321, https://doi.org/10.1007/ BF02949274.
46.J. Doucha, F. Straka, K. Lívanský, Utilization of flue gas for cultivation of microalgae Chlorella sp. in an outdoor open thin-layer photobioreactor, J. Appl. Phycol. 17 (2005) 403–412, https://doi.org/10.1007/s10811005-8701-7.
47.A. Juneja, R.M. Ceballos, G.S. Murthy, Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review, Energies. 6 (2013) 4607–4638, https://doi.org/10.3390/ en6094607.
48. D.A. Pereira, V.O. Rodrigues, S.V. Gomez, ´ E.A. Sales, O. Jorquera, Parametric sensitivity analysis for temperature control in outdoor photobioreactors, Bioresour. Technol. 144 (2013) 548–553, https://doi.org/10.1016/J. BIORTECH.2013.07.009.
49.H. Zheng, Z. Gao, F. Yin, X. Ji, H. Huang, Effect of CO2 supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues, Bioresour. Technol. 126 (2012) 24–30, https://doi. org/10.1016/j.biortech.2012.09.048.
50.M.E. Iniguez, ˜ J.A. Conesa, A. Fullana, Recyclability of four types of plastics exposed to UV irradiation in a marine environment,Waste Manag. 79 (2018) 339–345, https://doi.org/10.1016/j.wasman.2018.08.006.
51.C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svr ˇ ˇcek, C. del Canizo, ˜ I. Tobias, Modifying the solar spectrum to enhance silicon solar cell efficiency-an overview of available materials, Sol. Energy Mater. Sol. Cells 91 (2007) 238–249, https://doi.org/10.1016/j.solmat.2006.09.003.
52.Zuorro, A., Mafei, G., Lavecchia, R., 2016. Optimization of enzyme assisted lipid extraction from Nannochloropsis microalgae. J. Taiwan Inst. Chem. Eng. 67, 106–114. https://doi.org/10.1016/j. jtice.2016.08.016.
53.Zheng, H., Yin, J., Gao, Z., Huang, H., Ji, X., Dou, C., 2011. Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: a comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Appl. Biochem. Biotechnol. 164, 1215–1224. https://doi.org/10.1007/s12010-011-9207-1.
54.A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: environmental pollution control and future directions. Bioresour. Technol. 301 (1), 1–19, 122804. https://doi.org/10.1016/j.biortech.2020.122804.