Advanced Energy Storage Solutions: Innovative Approaches to Microencapsulation of Phase Change Materials
Abstract
Phase change materials (PCMs) represent a significant innovation in thermal energy storage systems, enabling the controlled absorption and release of energy as needed by a system. PCMs find extensive application across various domains, including but not limited to buildings, textiles, electronic devices, and heat management for batteries. These materials are favored for their remarkable qualities, such as high energy storage density, cost-effectiveness, reusability, minimal interference with the system, and adaptability to a wide range of temperatures. However, the application of PCMs often encounters challenges related to leakage when exposed to different environments. Microencapsulation emerges as a viable technique to safeguard PCMs against external factors and leakage issues, while preserving their thermal energy storage capabilities. Over time, numerous physical and chemical methods have been developed to produce microcapsules with robust mechanical integrity and long-term stability. Nonetheless, none of these methods can deliver Microencapsulated Phase Change Materials (MEPCMs) with all the desired properties. To fully harness the potential of MEPCMs, there is a need for innovative techniques that enhance their structural stability and extend their service life. Existing approaches may require modifications, such as the incorporation of nanoparticles and binding materials, to improve their overall performance. This paper offers an overview of PCM types and shell materials used for encapsulation, common microencapsulation methods, and the characterization techniques employed to assess the properties of developed MEPCMs. Furthermore, the paper delves into the limitations and advancements in this field, shedding light on the evolving landscape of PCM encapsulation technology.
References
2.Goswami, T. K., & Raj, V. (2018). Use of phase change material (PCM) for the improvement of thermal performance of cold storage. MOJ Current Research & Reviews , Volume 1(Issue 2), 49–61. https://doi.org/10.15406/MOJCRR.2018.01.00010
3.Akeiber, H., Nejat, P., Majid, M. Z. A., Wahid, M. A., Jomehzadeh, F., Zeynali Famileh, I., Calautit, J. K., Hughes, B. R., & Zaki, S. A. (2016). A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renewable and Sustainable Energy Reviews, 60, 1470–1497. https://doi.org/10.1016/j.rser.2016.03.036
4.Giro-Paloma, J., Martínez, M., Cabeza, L. F., & Fernández, A. I. (2016). Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review. Renewable and Sustainable Energy Reviews, 53, 1059–1075. https://doi.org/10.1016/j.rser.2015.09.040
5.Farid, M. M., Khudhair, A. M., Razack, S. A. K., & Al-Hallaj, S. (2004). A review on phase change energy storage: Materials and applications. Energy Conversion and Management, 45(9–10), 1597–1615. https://doi.org/10.1016/J.ENCONMAN.2003.09.015
6.Bendkowska, W., & Wrzosek, H. (2009). Experimental study of the thermoregulating properties of nonwovens treated with microencapsulated PCM. Fibres & Textiles in Eastern Europe, 17(5), 87-91.
7.Silva, T., Vicente, R., & Rodrigues, F. (2016). Literature review on the use of phase change materials in glazing and shading solutions. Renewable and Sustainable Energy Reviews, 53, 515–535. https://doi.org/10.1016/j.rser.2015.07.201
8.Su, W., Darkwa, J., & Kokogiannakis, G. (2015). Review of solid–liquid phase change materials and their encapsulation technologies. Renewable and Sustainable Energy Reviews, 48, 373–391. https://doi.org/10.1016/J.RSER.2015.04.044
9.Kumar, R., Misra, M. K., Kumar, R., Gupta, D., Sharma, P. K., Tak, B. B., & Meena, S. R. (2011). Phase change materials: Technology status and potential defence applications. Defence Science Journal, 61(6), 576–582. https://doi.org/10.14429/DSJ.61.363
10.Huang, X., Alva, G., Jia, Y., & Fang, G. (2017). Morphological characterization and applications of phase change materials in thermal energy storage: A review. Renewable and Sustainable Energy Reviews, 72, 128–145. https://doi.org/10.1016/j.rser.2017.01.048
11.Hough, T.P. (2016) Solar Energy: New Research; Nova Publishers: New York, NY, USA, pp 247-287
12.Kheradmand, M., Azenha, M., de Aguiar, J. L. B., & Krakowiak, K. J. (2014). Thermal behavior of cement based plastering mortar containing hybrid microencapsulated phase change materials. Energy and Buildings, 84, 526–536. https://doi.org/10.1016/J.ENBUILD.2014.08.010
13.Jeong, S. G., Jeon, J., Seo, J., Lee, J. H., & Kim, S. (2012). Performance evaluation of the microencapsulated PCM for wood-based flooring application. Energy Conversion and Management, 64, 516–521. https://doi.org/10.1016/J.ENCONMAN.2012.03.007
14.Sharma, A., Tyagi, V. V., Chen, C. R., & Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13(2), 318–345. https://ideas.repec.org/a/eee/rensus/v13y2009i2p318-345.html
15.Wahid, M. A., Hosseini, S. E., Hussen, H. M., Akeiber, H. J., Saud, S. N., & Mohammad, A. T. (2017). An overview of phase change materials for construction architecture thermal management in hot and dry climate region. Applied Thermal Engineering, 112, 1240–1259. https://doi.org/10.1016/J.APPLTHERMALENG.2016.07.032
16.Zhao, C. Y., & Zhang, G. H. (2011). Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications. Renewable and Sustainable Energy Reviews, 15(8), 3813–3832. https://doi.org/10.1016/J.RSER.2011.07.019
17.Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40(9), 1107–1121. https://doi.org/10.1016/J.FOODRES.2007.07.004
18.Fang, Y., Kuang, S., Gao, X., & Zhang, Z. (2008). Preparation and characterization of novel nanoencapsulated phase change materials. Energy Conversion and Management, 49(12), 3704–3707. https://doi.org/10.1016/J.ENCONMAN.2008.06.027
19.Fang, Y., Wei, H., Liang, X., Wang, S., Liu, X., Gao, X., & Zhang, Z. (2016). Preparation and Thermal Performance of Silica/n-Tetradecane Microencapsulated Phase Change Material for Cold Energy Storage. Energy and Fuels, 30(11), 9652–9657. https://doi.org/10.1021/ACS.ENERGYFUELS.6B01799
20.Salunkhe, P. B., & Shembekar, P. S. (2012). A review on effect of phase change material encapsulation on the thermal performance of a system. Renewable and Sustainable Energy Reviews, 16(8), 5603–5616. https://doi.org/10.1016/j.rser.2012.05.037
21.Umair, M. M., Zhang, Y., Iqbal, K., Zhang, S., & Tang, B. (2019). Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review. Applied Energy, 235, 846–873. https://doi.org/10.1016/J.APENERGY.2018.11.017
22.Sarier, N., & Onder, E. (2007). The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics. Thermochimica Acta, 452(2), 149–160. https://doi.org/10.1016/J.TCA.2006.08.002
23.Sánchez, L., Sánchez, P., de Lucas, A., Carmona, M., & Rodríguez, J. F. (2007). Microencapsulation of PCMs with a polystyrene shell. Colloid and Polymer Science, 285(12), 1377–1385. https://doi.org/10.1007/S00396-007-1696-7
24.Salaun, F., Devaux, E., Bourbigot, S., Rumeau, P., Chapuis, P. O., Saha, S. K., & Volz, S. (2008). Polymer nanoparticles to decrease thermal conductivity of phase change materials. Thermochimica Acta, 477(1-2), 25-31.
25.Jamekhorshid, A., Sadrameli, S. M., & Farid, M. (2014). A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renewable and Sustainable Energy Reviews, 31, 531–542. https://doi.org/10.1016/J.RSER.2013.12.033
26.Kim, O. H., Lee, K., Kim, K., Lee, B. H., & Choe, S. (2006). Effect of PVA in dispersion polymerization of MMA. Polymer, 47(6), 1953–1959. https://doi.org/10.1016/J.POLYMER.2006.01.025
27.Wang, Y., Xia, T. D., Feng, H. X., & Zhang, H. (2011). Stearic acid/polymethylmethacrylate composite as form-stable phase change materials for latent heat thermal energy storage. Renewable Energy, 36(6), 1814–1820. https://doi.org/10.1016/j.renene.2010.12.022
28.Sánchez-Silva, L., Rodríguez, J. F., Romero, A., Borreguero, A. M., Carmona, M., & Sánchez, P. (2010). Microencapsulation of PCMs with a styrene-methyl methacrylate copolymer shell by suspension-like polymerisation. Chemical Engineering Journal, 157(1), 216–222. https://doi.org/10.1016/J.CEJ.2009.12.013
29.Arshady, R. (1992). Suspension, emulsion, and dispersion polymerization: A methodological survey. Colloid and Polymer Science, 270(8), 717–732. https://doi.org/10.1007/BF00776142
30.Bryant, Y. G. (1999). Melt spun fibers containing microencapsulated phase change material. ASME-PUBLICATIONS-HTD, 363, 225-234.
31.Salaün, F., Bedek, G., Devaux, E., Dupont, D., & Gengembre, L. (2011). Microencapsulation of a cooling agent by interfacial polymerization: Influence of the parameters of encapsulation on poly(urethane-urea) microparticles characteristics. Journal of Membrane Science, 370(1–2), 23–33. https://doi.org/10.1016/J.MEMSCI.2010.11.033
32.You, M., Zhang, X. X., Li, W., & Wang, X. C. (2008). Effects of MicroPCMs on the fabrication of MicroPCMs/polyurethane composite foams. Thermochimica Acta, 472(1-2), 20-24
33.Hawlader, M. N. A., Uddin, M. S., Khin, M. M., Hawlader, M. N. A., Uddin, M. S., & Khin, M. M. (2003). Microencapsulated PCM thermal-energy storage system. Applied Energy, 74(1–2), 195–202. https://EconPapers.repec.org/RePEc:eee:appene:v:74:y:2003:i:1-2:p:195-202
34.Cape, S. P., Villa, J. A., Huang, E. T. S., Yang, T. H., Carpenter, J. F., & Sievers, R. E. (2008). Preparation of Active Proteins, Vaccines and Pharmaceuticals as Fine Powders using Supercritical or Near-Critical Fluids. Pharmaceutical Research, 25(9), 1967. https://doi.org/10.1007/S11095-008-9575-6
35.Gao, F., Wang, X., & Wu, D. (2017). Design and fabrication of bifunctional microcapsules for solar thermal energy storage and solar photocatalysis by encapsulating paraffin phase change material into cuprous oxide. Solar Energy Materials and Solar Cells, 168, 146–164. https://doi.org/10.1016/J.SOLMAT.2017.04.026
36.Yuan, W. J., Wang, Y. P., Li, W., Wang, J. P., Zhang, X. X., & Zhang, Y. K. (2015). Microencapsulation and characterization of polyamic acid microcapsules containing n-octadecane via electrospraying method. Materials Express, 5(6), 480–488. https://doi.org/10.1166/MEX.2015.1268
37.Arpagaus, C., Collenberg, A., Rütti, D., Assadpour, E., & Jafari, S. M. (2018). Nano spray drying for encapsulation of pharmaceuticals. International Journal of Pharmaceutics, 546(1–2), 194–214. https://doi.org/10.1016/J.IJPHARM.2018.05.037
38.Tarun, G., & Murthy, R. S. R. (2011). Patented microencapsulation techniques and its application. Journal of Pharmacy Research, 4(7), 2097-2102.
39.Feng, T., Xiao, Z., & Tian, H. (2009). Recent patents in flavor microencapsulation. Recent Patents on Food, Nutrition & Agriculture, 1(3), 193–202. https://doi.org/10.2174/2212798410901030193
40.Wan, X., Guo, B., & Xu, J. (2017). A facile hydrothermal preparation for phase change materials microcapsules with a pliable self-recovering shell and study on its thermal energy storage properties. Powder Technology, 312, 144–151. https://doi.org/10.1016/J.POWTEC.2017.02.035
41.Zhang, L., Yang, W., Jiang, Z., He, F., Zhang, K., Fan, J., & Wu, J. (2017). Graphene oxide-modified microencapsulated phase change materials with high encapsulation capacity and enhanced leakage-prevention performance. Applied Energy, 197, 354–363. https://doi.org/10.1016/j.apenergy.2017.04.041
42.Su, W., Darkwa, J., & Kokogiannakis, G. (2017). Development of microencapsulated phase change material for solar thermal energy storage. Applied thermal engineering, 112, 1205-1212.
43.Qiu, X., Song, G., Chu, X., Li, X., & Tang, G. (2013). Preparation, thermal properties and thermal reliabilities of microencapsulated n-octadecane with acrylic-based polymer shells for thermal energy storage. Thermochimica Acta, 551, 136–144. https://doi.org/10.1016/J.TCA.2012.10.027
44.Jiang, X., Luo, R., Peng, F., Fang, Y., Akiyama, T., & Wang, S. (2015). Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3. Applied Energy, 137, 731–737. https://doi.org/10.1016/J.APENERGY.2014.09.028
45.Park, S., Lee, Y., Kim, Y. S., Lee, H. M., Kim, J. H., Cheong, I. W., & Koh, W. G. (2014). Magnetic nanoparticle-embedded PCM nanocapsules based on paraffin core and polyurea shell. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 450(1), 46–51. https://doi.org/10.1016/J.COLSURFA.2014.03.005
46.Peng, G., Dou, G., Hu, Y., Sun, Y., & Chen, Z. (2020). Phase change material (PCM) microcapsules for thermal energy storage. Advances in Polymer Technology, 2020. https://doi.org/10.1155/2020/9490873
47.Sukhorukov, G., Fery, A., & Möhwald, H. (2005). Intelligent micro- and nanocapsules. Progress in Polymer Science, 30(8–9), 885–897. https://doi.org/10.1016/J.PROGPOLYMSCI.2005.06.008
48.Fang, Y., Yu, H., Wan, W., Gao, X., & Zhang, Z. (2013). Preparation and thermal performance of polystyrene/n-tetradecane composite nanoencapsulated cold energy storage phase change materials. Energy Conversion and Management, 76, 430–436. https://doi.org/10.1016/J.ENCONMAN.2013.07.060
49.Wang, Y., Zhang, Y., Xia, T., Zhao, W., & Yang, W. (2013). Effects of fabricated technology on particle size distribution and thermal properties of stearic-eicosanoic acid/polymethylmethacrylate nanocapsules. https://doi.org/10.1016/j.solmat.2013.09.028