IMPLEMENTATION OF MACHINE LEARNING AND DEEP LEARNING IN IMPROVING SIGNAL TO NOISE RATIO FOR AUDIO ANALYSIS IN DIGITAL MEDIA PLATFORMS

Sudipta Ghosh, Subhojit Jalal, Rajat Agarwal, Kalyan Chatterjee, Sayanti Banerjee Department of Mechanical and Automation Engineering Department of Electronics and Communication Engineering Amity University Kolkata Major Arterial Road, Action Area11, New Town, Kolkata 700135 sudiptaghosh1510@gmail.com

Abstract-Audio analysis is fast becoming a requirement of digital media for analysing multiple frequencies of sound at a time and also reduce the background noise. The urban sound challenge is increasing day by day and the problem is meant to introduce for audio analysis and processing in the usual classification scenario. Model is implemented on the basis of keras framework and librosalibrary. Keras is capable of running of the algorithm tensorflow. Kerascan be described as an interface rather than a standalone machine learning tools. Librosa is one of the python library for music and audio analysis. It helps us with necessary music information retrieval systems.

The authorcollect the database and use the data and also use the graph for a better understanding of audio data analysis.

KEYWORDS: os; pandas; librosa; keras; glob; numpy; sklearn

INTRODUCTION:

Our sense of hearing gives us the information of our environment with respect to the characteristics of sound producing objects present in our locality. We can easily hear the twittering of birds outside and also the movement of traffic at a distance while doing our own work. But it is not easy to imagine that the machine also understand, hear and also make the difference of sound and their multiple frequencies at a time. There are many important techniques present in audio signal processing – audio data compression, synthesis and audio classification.

Audio analysis is the extraction of information and meaning from audio signals for analysis, synthesis and classification, storage. The observation mediums and the numerical methods vary as audio analysis can refer to the human ear and how people interpret with the audible sound sources. Once theinformation of audio signal has been observed, only then it can be proceed for the logical, emotional, descriptive or otherwise relevant interpretation by the authors.

As we are directly and indirectly connected with the audio. as our brain works continuously with the different frequencies of sounds. Thus, our brain starts to understands the information.

Here we also use the sampling method for audio analysis. Sampling is the process by which a continuous time signal can be converted into discrete time signal.

<u>Sampling rate</u>

Here the authors extract the values of audio file at half a second. It is called sampling of audio data and the rate at which the audio data is sampled is called sampling rate.

On the contrary, here the author represents the data in frequency domain.

Applications-1) indexing of many music collection according to their audio feature2) Speech recognition, processing and synthesis.

Flow chart

Output-

Output 1

Out[4]: <matplotlib.collections.PolyCollection at 0x1f58631dda0>

output 2

	ID	Class
0	0	siren
1	1	<pre>street_music</pre>
2	2	drilling
3	3	siren
4	4	dog_bark
5	6	children_playing
6	10	<pre>street_music</pre>
7	11	drilling
8	12	gun_shot
9	15	dog_bark
10	17	engine_idling
11	18	siren
12	19	gun_shot
13	20	engine_idling
14	22	air_conditioner
15	24	air_conditioner
16	26	engine_idling
17	27	siren
18	32	children_playing
19	33	jackhammer

		1	 3
20	35	gun_shot	
21	36	siren	
22	37	jackhammer	
23	38	street_music	
24	40	jackhammer	
25	42	engine_idling	
26	43	siren	
27	44	children playing	
28	45	jackhammer	
29	46	engine_idling	
5405	8691	<pre>street_music</pre>	
5406	8693	car_horn	
5407	8694	street_music	
5408	8695	air conditioner	
5409	8699	street music	
5410	8701	air conditioner	
5411	8703	gun_shot	
5412	8704		
5413	8705	iackhammer	
5414	8706	siren	
5415	8707	gun shot	
5416	8709	dog bark	
5417	8710	street music	
5418	8711	dog bark	
5419	8712	iackhammer	
5420	8713	dog bark	
5421	8714	engine idling	
5422	8715	ciron	
5423	8716	children nlaving	
5425	8717	iackhammen	
5425	8720	street music	
5425	9721	angine idling	
5420	8722	dog bank	
5427	0722	dog_bark	
5420	0723	street_music	
5429	0724	children_playing	
5430	8/25	engine_idiing	
5431	8726	dog_bark	
5432	8/27	engine_idling	
5433	8728	engine_idling	
5434	8729	air_conditioner	
[5435	rows	x 2 columns]	
3			

Output 3

 $\begin{bmatrix} [0. & 0. & 1. & \dots, & 0. & 0. & 0.] \\ [0. & 0. & 0. & \dots, & 1. & 0. & 0.] \\ [0. & 0. & 0. & \dots, & 0. & 0. & 0.] \\ \dots, & & & & & \\ \begin{bmatrix} 0. & 1. & 0. & \dots, & 0. & 0. & 0. \end{bmatrix} \\ \begin{bmatrix} 0. & 1. & 0. & \dots, & 0. & 0. & 0. \end{bmatrix} \\ \begin{bmatrix} 0. & 0. & 0. & \dots, & 0. & 0. & 0. \end{bmatrix}$

https://doi.org/10.36375/prepare_u.a65

Output 4

÷	o					222 22				
Epoch 21/50										
5435/5435 [====		1 -	15	176us/step		loss:	0.8294	-	acc:	0.7165
Epoch 22/50		5 - I								
5435/5435 [====] -	15	178us/step	•	loss:	0.7960		acc:	0.7323
Epoch 23/50										
5435/5435 [1 -	15	177us/step	•	loss:	0.7805		acc:	0.7420
Epoch 24/50										
5435/5435 [1 -	15	175us/step		loss:	0.7629	-	acc:	0.7425
Epoch 25/50										
5435/5435 [1 -	15	177us/step	•	loss:	0.7702	-	acc;	0.7387
Epoch 26/50										
5435/5435 [***********	1 -	15	176us/step	•	loss:	0.7355	•	acc:	0.7433
Epoch 27/50										
5435/5435 [1 -	15	175us/step	٠	loss:	0.7291		acc:	0.7501
Epoch 28/50										
5435/5435 [] -	15	175us/step		loss:	0.7226	-	acc:	0.7533
Epoch 29/50										
5435/5435 [====		1 -	15	176us/step	•	loss:	0.7846	-	acc:	0.7592
Epoch 30/50										
5435/5435 [1 -	15	173us/step	•	loss:	0.6785		acc:	0.7650
Epoch 31/50										
5435/5435 [====		1 -	15	174us/step		loss:	0.6750		acc:	0.7674
Epoch 32/50										
5435/5435 [====		1 -	15	175us/step	-	loss:	0.6738	-	acc:	0.7711
Epoch 33/50										
5435/5435 [====		1 -	15	176us/step	•	loss:	0.6368	-	acc:	0.7890
Epoch 34/50		5								
5435/5435 [====		1.8	1s	174us/step		loss:	0.6557	-	acc:	0.7798
Epoch 35/50		В.,		anan territ						
5435/5435 [1 -	15	172us/step		loss:	0.6427	-	acc:	0.7847
Epoch 36/50										
5435/5435 [1 -	15	174us/step		loss:	0.6295		acc:	0.7910
Epoch 37/50		1000								
5435/5435 [1 -	15	174us/step		loss:	0.6816	-	acc:	0.7941
Epoch 38/50		2								
5435/5435 [====		1 -	15	174us/step	•	loss:	0.6001	-	acc:	0.7986
Epoch 39/50										
5435/5435 [1 -	15	173us/step		loss:	8.5932	-	acc:	0.8884
Epoch 40/50										
5435/5435 [====		1 -	15	173us/step	•	loss:	0.5901		acc:	0.8855
Epoch 41/50										
5435/5435 [====		1 -	15	173us/step	•	loss:	0.5963	-	acc:	0.7950
Epoch 42/50										
5435/5435 [====		1.	15	172us/step	٠	loss:	0.5979	-	acc:	0.7991
Epoch 43/50										
5435/5435 [====		1 -	15	174us/step		loss:	0.5686	-	acc:	0.8035
Epoch 44/50										
5435/5435 [====		1 -	15	172us/step	-	loss:	0.5868	-	acc:	0.8007
Epoch 45/50										
5435/5435 [====	***************************************] -	15	173us/step	-	loss:	0.5697	-	acc:	0.8070
Epoch 46/50										
5435/5435 [] -	15	172us/step	•	loss:	0.5567		acc:	0.8099
Epoch 47/50										
5435/5435 [====		1 -	15	173us/step		loss:	0.5709	-	acc:	0.8072
Epoch 48/50										
5435/5435 [] -	15	170us/step	•	loss:	0.5517	-	acc:	0.8098
Epoch 49/50										
5435/5435 [*******	1 -	15	173us/step	٠	loss:	0.5529	-	acc:	0.8072
Enoch 50/60										

Conclusion-

Audio analysis has been developed steadily over the last few years and it is incorporated into several new applications. In this paper, authors have developed the audio analysis and it's required graph using machine learning and deep learning tools. The dataset contains 8732 different sounds <=4s.

Reference-

[1] Gideon mendels,"how to apply deep learning and machine learning method in audio analysis", Nov,2019

[2] Acton, Ciaran," analysis of variance(ANOVA)",2009

- [3] Mitchell,"machine learning",1997
- [4] Bishop,C.M,"pattern recognition and machine learning",2006

[5] Schmidhuber, "deep learning in neural network",2015

[6] FaizanShaikh,"getting started with audio data analysis using deep learning", August,2017

[7] G.W.Smith," The machine as Artist", April, 2017

[8] Shen, yelong, "a latent semantic model with convolution-pooling structure for information retrieval", October, 2013

[9] Jotikasingh,"introduction to audio processing",September,2019

[10] A.Huang, and R.Wu," deep learning for music"

[11] N.Jaitly and G.Hinton,"learning a better representation og speech soundwaves using neural networks",2011