A Novel RDRA for Primitive Detection of Breast Cancer in Women for Varying Mammographic Densities

Keywords: Rectangular Dielectric Resonator Antenna (RDRA), Breast Cancer Detection, Wide band, High Gain, Sensors

Abstract

Demand for efficient sensors have increased due to evolution of 5 G and IoT technologies.  Sensors are labelled as prominent tools to analyze biological and physiological conditions of human body for prognosis and diagnostic purposes. Currently, wide band radio sensor technology is gaining momentum to be used as a sensor for primitive stage breast cancer detection. In this research work, a RDRA is proposed as key sensor part which leads to design of smart data acquisition system. Rectangular DRA resonates for a frequency range of 2.9-4.7 GHz (48% Impedance bandwidth) which lies in the Lower European frequency band. Peak gain of 4dB is obtained through proposed antenna. High radiation efficiency, compact size of the antenna makes it perfectly suitable to be employed as a sensor for early breast cancer detection. Proposed antenna can be integrated with wide band wireless communication for Wi-Fi and LTE communication and Wireless Body Area Networks (WBAN) applications as well.

Downloads

Download data is not yet available.

Author Biography

Parikshit Vasisht, Apeejay Stya University

Department of Electronics and Communication

References

World Health Organization. (‎2020)‎. WHO report on cancer: setting priorities, investing wisely and providing care for all. World Health Organization. https://apps.who.int/iris/handle/10665/330745 .

A. C. Society, Cancer Facts & Figures, The Society, New York, NY, USA, 2016. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2016.html

K. B. C. Society, Breast Cancer Facts & Figures 2014,Korean Breast Cancer Society, Seoul, South Korea, 2014. https://pubmed.ncbi.nlm.nih.gov/28382089/

A.L.Siu,“ Screening for breast cancer:U.S. Preventive ser- vices task force recommendation statement,” Annals of Internal Medicine,vol.164, pp.279–296,2016.

D. R. Hooley, “Mammographic Images Showing How Cancer Looks in Each of the Breast Density Categories,” Dense Breast info, http://densebreast-info.org/faqs-for-health-professionals .aspx.

P. M. Meaney, M. W. Fanning, T. Zhou, A. Golnabi, S. D. Geimer, and K. D. Paulsen, “Clinical microwave breast imaging—2D results and the evolution to 3D,” in Proceedings of the 2009 International Conference on Electromagnetics in Advanced Applications (ICEAA’09), pp. 881–884, Torino, Italy, September 2009. doi :10.1109/ICEAA.2009.5297356.

P. M. Meaney, M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, “A clinical prototype for active microwave imaging of the breast,” IEEE Trans. Microw. Theory Tech., vol. 48, pp. 1841–1853, 2000. doi: 10.1109/22.883861.

T. M. Grzegorczyk, P. M. Meaney, P. A. Kaufman, R. M. Diflorio-Alexander, and K. D. Paulsen, “Fast 3-D tomographic microwave imaging for breast cancer detection,” IEEE Transactions on Medical Imaging,vol.31,pp. 1584–1592, 2012.doi: 10.1109/Tmi.2012.2197218

K.-J. Lee, J.-Y. Kim, S.-H. Son, J. Lee, and S. Jeon, “Sensing probe for 3–6 GHz microwave imaging systems,” Electronics Letters, vol.50, pp. 1049-1050,2014. https://doi.org/10.1049/el.2014.1923

E. Porter, E. Kirshin, A. Santorelli, M. Coates, and M. Popovı,“Time-domain multistatic radar system for microwave breast screening,” IEEEAntennas andWireless Propagation Letters,vol. 12, pp. 229–232, 2013. doi: 10.1109/LAWP.2013.2247374

E.C.Fear, P.M.Meaney, andM.A.Stuchly,“Microwaves for breast cancer detection?” IEEE Potentials,vol.22,pp. 12– 18, 2003. doi: 10.1109/Mp.2003.1180933

M. Klemm, J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, andR. Benjamin, “Microwave radar-based breast cancer detection: imaging in inhomogeneous breast phantoms,” IEEE Antennas andWireless Propagation Letters,vol.8,pp. 1349–1352, 2009. doi:10.1109/LAWP.2009.2036748

J. Bourqui, J. Garrett, and E. Fear, “Measurement and analysis of microwave frequency signals transmitted through the breast,” International Journal of Biomedical Imaging,vol.2012, Article ID 562563, 11 pages, 2012. https://doi.org/10.1155/2012/562563

R. C. Conceicao, H. Medeiros, M. O’Halloran, D. Rodriguez- Herrera, D. Flores-Tapia, and S. Pistorius, “Initial classification of breast tumour phantoms using a UWB radar prototype,” in Proceedings ofthe 15th International Conference on Electromag- netics in Advanced Applications (ICEAA ’13), pp. 720–723, IEEE, 2013. doi: 10.1109/ICEAA.2013.6632339

N. Simonov, S.-I. Jeon, S.-H. Son, J.-M. Lee, and H.-J. Kim,“3D microwave breast imaging based on multistatic radar concept system,” Journal ofElectromagnetic Engineeringand Science,vol. 12, pp. 107–114, 2012. https://doi.org/10.5515/JKIEES.2012.12.1.107

S. S. Chaudhary, R. K. Mishra, A. Swarup, and J. M. Thomas,“Dielectric properties of normal & malignant human breast tissues at radiowave & microwave frequencies,” Indian Journal of Biochemistry and Biophysics,vol.21,pp. 76–79, 1984. https://pubmed.ncbi.nlm.nih.gov/6490065/

P. M. Meaney, S. A. Pendergrass, M. W. Fanning, and K. D. Paulsen, “Importance of using a reduced contrast coupling medium in 2D microwave breast imaging,” Journal of Electro- magnetic Waves and Applications,vol.17,pp.333–355, 2003. DOI: 10.1163/156939303322235851

L. Wang, “Microwave sensors for breast cancer detection,” Sensors (Switzerland), vol. 18, no. 2, pp. 1–17, 2018, doi: 10.3390/s18020655.

R. Cicchetti, E. Miozzi, and O. Testa, “Wideband and UWB antennas for wireless applications: A comprehensive review,” Int. J. Antennas Propag., vol. 2017, 2017, doi: 10.1155/2017/2390808.

T. Uno and S. Adachi, “Inverse scattering method for one-dimensional inhomogeneous layered media,” IEEE Trans. Antennas Propag., vol. 35, no. 12, pp. 1456–1466, 1987, doi: 10.1109/TAP.1987.1144033.

R. K. Mongia, P. Bhartia, C. L. Larose, and S. R. Mishra, “Accurate Measurement of Q-Factors of Isolated Dielectric Resonators,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 8, pp. 1463–1467, 1994, doi: 10.1109/22.297807.

T. Jun Cui and C. Hong Liang, “Inverse Scattering Method for One-Dimensional Inhomogeneous Lossy Medium by Using a Microwave Networking Technique,” IEEE Trans. Microw. Theory Tech., vol. 43, no. 8, pp. 1773–1781, 1995, doi: 10.1109/22.402259.

V. A Mikhnev, and P. Vainikainen, “Two-Step Inverse Scattering Method for,” vol. 48, no. 2, pp. 293–298, 2000. doi: 10.1109/8.833079

D. Franceschini, M. Donell, G. Franceschini, and A. Massa, “Iterative image reconstruction of two-dimensional scatterers illuminated by TE waves,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1484–1494, 2006, doi: 10.1109/TMTT.2006.871921.

J. M. Geffrin, P. Sabouroux, and C. Eyraud, “Free space experimental scattering database continuation: Experimental set-up and measurement precision,” Inverse Probl., vol. 21, no. 6, 2005, doi: 10.1088/0266-5611/21/6/S09.

S. M. Salvador, E. C. Fear, M. Okoniewski, and J. R. Matyas, “Exploring joint tissues with microwave imaging,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 8, pp. 2307–2313, 2010, doi: 10.1109/TMTT.2010.2052662.

B. J. Mohammed, A. M. Abbosh, S. Mustafa, and D. Ireland, “Microwave system for head imaging,” IEEE Trans. Instrum. Meas., vol. 63, no. 1, pp. 117–123, 2014, doi: 10.1109/TIM.2013.2277562.

M. T. Islam, M. Z. Mahmud, M. T. Islam, S. Kibria, and M. Samsuzzaman, “A Low Cost and Portable Microwave Imaging System for Breast Tumor Detection Using UWB Directional Antenna array,” Sci. Rep., vol. 9, no. 1, pp. 1–13, 2019, doi: 10.1038/s41598-019-51620

T. Kikkawa and T. Sugitani, “Planar UWB antenna array for breast cancer detection,” 2013 7th Eur. Conf. Antennas Propagation, EuCAP 2013, vol. 2, pp. 339–343, 2013. https://ieeexplore.ieee.org/document/6546278

S. Kwon and S. Lee, “Instantaneous microwave imaging with time-domain measurements for breast cancer detection,” Electron. Lett., vol. 49, no. 10, pp. 653–654, 2013, doi: 10.1049/el.2013.0248.

V. Selvaraj, D. Baskaran, P. H. Rao, P. Srinivasan, and R. Krishnan, “Breast Tissue Tumor Analysis Using Wideband Antenna and Microwave Scattering,” IETE J. Res., vol. 0, no. 0, pp. 1–11, 2018, doi: 10.1080/03772063.2018.1531067.

W. Shao, A. Edalati, T. R. McCollough, and W. J. McCollough, “A Time-Domain Measurement System for UWB Microwave Imaging,” IEEE Trans. Microw. Theory Tech., vol. 66, no. 5, pp. 2265–2275, 2018, doi: 10.1109/TMTT.2018.2801862.

G. Kaur and A. Kaur, “ Breast tissue tumor detection using ‘ S ’ parameter analysis with an UWB stacked aperture coupled microstrip patch antenna having a ‘ + ’ shaped defected ground structure ,” Int. J. Microw. Wirel. Technol., pp. 1–17, 2019, doi: 10.1017/s1759078719001442.

Amber Khan, Mainuddin , Moin Uddin, Parikshit Vasisht “A Novel UWB Compact Elliptical-Patch Antenna for Early Detection of Breast Cancer in Women with High Mammographic Density” 10.1504/IJMEI.2020.10033528.

E. Porter, E. Kirshin, A. Santorelli, M. Coates, and M. Popoví, “Time-domain multistatic radar system for microwave breast screening,” IEEE Antennas Wirel. Propag. Lett., vol. 12, pp. 229–232, 2013, doi: 10.1109/LAWP.2013.2247374

E. Porter, H. Bahrami, A. Santorelli, B. Gosselin, L. A. Rusch, and M. Popovic, “A Wearable Microwave Antenna Array for Time-Domain Breast Tumor Screening,” IEEE Trans. Med. Imaging, vol. 35, no. 6, pp. 1501–1509, 2016, doi: 10.1109/TMI.2016.2518489.

M. Z. Mahmud, M. T. Islam, N. Misran, S. Kibria, and M. Samsuzzaman, “Microwave imaging for breast tumor detection using uniplanar AMC Based CPW-fed microstrip antenna,” IEEE Access, vol. 6, no. c, pp. 44763–44775, 2018, doi: 10.1109/ACCESS.2018.2859434

W. Huang and A. A. Kishk, “Compact dielectric resonator antenna for microwave breast cancer detection,” IET Microwaves, Antennas Propag., vol. 3, no. 4, pp. 638–644, 2009, doi: 10.1049/iet-map.2008.0170.

A. Sabouni and A. A. Kishk, “Dual-polarized, broadside, thin dielectric resonator antenna for microwave imaging,” IEEE Antennas Wirel. Propag. Lett., vol. 12, pp. 380–383, 2013, doi: 10.1109/LAWP.2013.2252142.

Z. Xu, S. Zhu, R. Wang, and R. Xie, “An H-shape dielectric resonator antenna with U-slot on the patch,” 2016 Prog. Electromagn. Res. Symp. PIERS 2016 - Proc., pp. 4447–4450, 2016, doi: 10.1109/PIERS.2016.7735647.

S. S. Singhwal, B. K. Kanaujia, A. Singh, and J. Kishor, “Novel circularly polarized dielectric resonator antenna for microwave image sensing application,” Microw. Opt. Technol. Lett., vol. 61, no. 7, pp. 1821–1827, 2019, doi: 10.1002/mop.31830.

G.Kaur and A.Kaur ,”Monostatic radar-based microwave imaging of breast tumor detection using a compact cubical dielectric resonator antenna,” Microw. Opt. Technol. Lett., no. January, pp. 1–9, 2020, doi: 10.1002/mop.32557.

T. Sharma, M. Vashishath, P. Vasisht, A. Khan, M. Uddin and R. S. Yaduvanshi, “A Versatile Ultra-Wideband Radio Sensor for Early Stage Detection of Breast Cancer” https://link.springer.com/epdf/10.1007/s12647-021-00473.

T. Sharma et al., “A novel hybrid ultra-wideband radio sensor for primitive stage detection of breast cancer”, International Journal of Information Technology, Vol 1,pp 1-6, March 2021.

A. Petosa, “Dielectric Resonator Antenna Handbook” Artech House, 2007.

Published
2021-12-15
How to Cite
Vasisht, P., Sharma, T., Ranjan, S., Sehgal, M. S., & Uddin, M. (2021). A Novel RDRA for Primitive Detection of Breast Cancer in Women for Varying Mammographic Densities. PREPARE@u® | IEI Conferences. https://doi.org/10.36375/prepare_u.iei.a185
Section
- 36.IEC | Electronics and Telecommunication Engineering